Semiparametric regression analysis of length-biased interval-censored data.
Ontology highlight
ABSTRACT: In prevalent cohort design, subjects who have experienced an initial event but not the failure event are preferentially enrolled and the observed failure times are often length-biased. Moreover, the prospective follow-up may not be continuously monitored and failure times are subject to interval censoring. We study the nonparametric maximum likelihood estimation for the proportional hazards model with length-biased interval-censored data. Direct maximization of likelihood function is intractable, thus we develop a computationally simple and stable expectation-maximization algorithm through introducing two layers of data augmentation. We establish the strong consistency, asymptotic normality and efficiency of the proposed estimator and provide an inferential procedure through profile likelihood. We assess the performance of the proposed methods through extensive simulations and apply the proposed methods to the Massachusetts Health Care Panel Study.
SUBMITTER: Gao F
PROVIDER: S-EPMC8614128 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA