Unknown

Dataset Information

0

Single-Cell RNA-Sequencing Identifies Infrapatellar Fat Pad Macrophage Polarization in Acute Synovitis/Fat Pad Fibrosis and Cell Therapy.


ABSTRACT: The pathogenesis and progression of knee inflammatory pathologies is modulated partly by residing macrophages in the infrapatellar fat pad (IFP), thus, macrophage polarization towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes is important in joint disease pathologies. Alteration of M1/M2 balance contributes to the initiation and progression of joint inflammation and can be potentially altered with mesenchymal stem cell (MSC) therapy. In an acute synovial/IFP inflammation rat model a single intra-articular injection of IFP-MSC was performed, having as controls (1) diseased rats not receiving IFP-MSC and (2) non-diseased rats. After 4 days, cell specific transcriptional profiling via single-cell RNA-sequencing was performed on isolated IFP tissue from each group. Eight transcriptomically distinct cell populations were identified within the IFP across all three treatment groups with a noted difference in the proportion of myeloid cells across the groups. Largely myeloid cells consisted of macrophages (>90%); one M1 sub-cluster highly expressing pro-inflammatory markers and two M2 sub-clusters with one of them expressing higher levels of canonical M2 markers. Notably, the diseased samples (11.9%) had the lowest proportion of cells expressing M2 markers relative to healthy (14.8%) and MSC treated (19.4%) samples. These results suggest a phenotypic polarization of IFP macrophages towards the pro-inflammatory M1 phenotype in an acute model of inflammation, which are alleviated by IFP-MSC therapy inducing a switch towards an alternate M2 status. Understanding the IFP cellular heterogeneity and associated transcriptional programs may offer insights into novel therapeutic strategies for disabling joint disease pathologies.

SUBMITTER: Kouroupis D 

PROVIDER: S-EPMC8615266 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7792122 | biostudies-literature
| S-EPMC6381765 | biostudies-literature
| S-EPMC5449220 | biostudies-literature
| S-EPMC4129979 | biostudies-literature
| S-EPMC8667119 | biostudies-literature
| S-EPMC8739472 | biostudies-literature
| S-EPMC9869593 | biostudies-literature
| S-EPMC6659713 | biostudies-literature
| S-EPMC9434820 | biostudies-literature
2024-10-07 | GSE253200 | GEO