Unknown

Dataset Information

0

Engineering of Saccharomyces cerevisiae for 24-Methylene-Cholesterol Production.


ABSTRACT: 24-Methylene-cholesterol is a necessary substrate for the biosynthesis of physalin and withanolide, which show promising anticancer activities. It is difficult and costly to prepare 24-methylene-cholesterol via total chemical synthesis. In this study, we engineered the biosynthesis of 24-methylene-cholesterol in Saccharomyces cerevisiae by disrupting the two enzymes (i.e., ERG4 and ERG5) in the yeast's native ergosterol pathway, with ERG5 being replaced with the DHCR7 (7-dehydrocholesterol reductase) enzyme. Three versions of DHCR7 originating from different organisms-including the DHCR7 from Physalis angulata (PhDHCR7) newly discovered in this study, as well as the previously reported OsDHCR7 from Oryza sativa and XlDHCR7 from Xenopus laevis-were assessed for their ability to produce 24-methylene-cholesterol. XlDHCR7 showed the best performance, producing 178 mg/L of 24-methylene-cholesterol via flask-shake cultivation. The yield could be increased up to 225 mg/L, when one additional copy of the XlDHCR7 expression cassette was integrated into the yeast genome. The 24-methylene-cholesterol-producing strain obtained in this study could serve as a platform for characterizing the downstream enzymes involved in the biosynthesis of physalin or withanolide, given that 24-methylene-cholesterol is a common precursor of these chemicals.

SUBMITTER: Yang J 

PROVIDER: S-EPMC8615579 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6348118 | biostudies-literature
| S-EPMC6029064 | biostudies-literature
| S-EPMC9148506 | biostudies-literature
| S-EPMC5705256 | biostudies-literature
| S-EPMC9941373 | biostudies-literature
| S-EPMC4136831 | biostudies-literature
| S-EPMC9201568 | biostudies-literature
| S-EPMC7860014 | biostudies-literature
| S-EPMC7090239 | biostudies-literature
| S-EPMC6839068 | biostudies-literature