Project description:A low anti-spike antibody response of 28.6% was observed 28 days after BNT162b2 vaccine second dose among 133 solid organ transplant-recipients without previous COVID-19. No serious adverse events were recorded. Four severe COVID-19 cases were reported between or after the two doses. Our data suggests to change the vaccine strategy.
Project description:The SARS-CoV-2 mRNA vaccine-induced humoral response and reactogenicity profile are described in allogeneic hematopoietic stem cell transplant (HSCT) recipients. 75.0% (by Simoa assay) or 80.0% (by Roche assay) of the HSCT cohort had a positive antibody response upon series completion, as compared to 100% in the healthy cohort.
Project description:ObjectivesWe aimed to evaluate the rates of antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine among kidney transplant recipients, and to identify factors associated with reduced immunogenicity.MethodsThis was a prospective cohort study including consecutive kidney transplant recipients in a single referral transplant centre. Participants were tested for anti-spike (anti-S) antibodies 2-4 weeks after a second vaccine dose. Primary outcome was rate of seropositivity. Univariate and multivariate analyses were conducted to identify factors associated with seropositivity.ResultsOf 308 kidney transplant recipients included, only 112 (36.4%) tested positive for anti-S antibodies 2-4 weeks after receiving the second dose of BNT162b2 vaccine. Median antibody titre was 15.5 AU/mL (interquartile range (IQR) 3.5-163.6). Factors associated with antibody response were higher estimated glomerular filtration rate (eGFR) (odds ratio (OR) 1.025 per mL/min/1.73 m2, 95% confidence interval (CI) 1.014-1.037, p < 0.001), lower mycophenolic acid dose (OR 2.347 per 360 mg decrease, 95%CI 1.782-3.089, p < 0.001), younger age (OR 1.032 per year decrease, 95%CI 1.015-1.05, p < 0.001) and lower calcineurin inhibitor (CNI) blood level (OR 1.987, 95%CI 1.146-3.443, p 0.014). No serious adverse events resulting from the vaccine were reported.ConclusionsKidney transplant recipients demonstrated an inadequate antibody response to SARS-CoV-2 mRNA vaccination. Immunosuppression level was a significant factor in this response. Strategies to improve immunogenicity should be examined in future studies.
Project description:According to preliminary data, seroconversion after mRNA SARS-CoV-2 vaccination might be unsatisfactory in Kidney Transplant Recipients (KTRs). However, it is unknown if seronegative patients develop at least a cellular response that could offer a certain grade of protection against SARS-CoV-2. To answer this question, we prospectively studied 148 recipients of either kidney (133) or kidney-pancreas (15) grafts with assessment of IgM/IgG spike (S) antibodies and ELISpot against the nucleocapside (N) and the S protein at baseline and 2 weeks after receiving the second dose of the mRNA-1273 (Moderna) vaccine. At baseline, 31 patients (20.9%) had either IgM/IgG or ELISpot positivity and were considered to be SARS-CoV-2-pre-immunized, while 117 (79.1%) patients had no signs of either cellular or humoral response and were considered SARS-CoV-2-naïve. After vaccination, naïve patients who developed either humoral or cellular response were finally 65.0%, of which 29.9% developed either IgG or IgM and 35.0% S-ELISpot positivity. Factors associated with vaccine unresponsiveness were diabetes and treatment with antithymocytes globulins during the last year. Side effects were consistent with that of the pivotal trial and no DSAs developed after vaccination. In conclusion, mRNA-1273 SARS-CoV-2 vaccine elicits either cellular or humoral response in almost two thirds of KTRs.
Project description:BackgroundCOVID-19 is more severe in transplant recipients. Variants of concern have supplanted wild-type virus. In transplant recipients, data are limited on 2-dose or 3-dose vaccine immunogenicity against variant viruses.ObjectiveTo assess neutralizing antibody responses against SARS-CoV-2 variants in transplant recipients after 2 and 3 vaccine doses.DesignSecondary analysis of a randomized, double-blind, controlled trial of a third dose of mRNA-1273 vaccine versus placebo. (ClinicalTrials.gov: NCT04885907).SettingSingle-center transplant program.PatientsOrgan transplant recipients.InterventionThird dose of mRNA-1273 vaccine versus placebo.MeasurementsSera were analyzed for neutralization against wild-type virus and the Alpha, Beta, and Delta variants using a surrogate virus neutralization assay and a spike-pseudotyped lentivirus assay.ResultsA total of 117 transplant recipients were analyzed (60 in the mRNA-1273 group and 57 in the placebo group). Sera were obtained before and 4 to 6 weeks after the third dose. After 2 doses, the proportion of patients with positive neutralization for all 3 variants was small compared with wild-type virus. After the third dose of mRNA-1273 vaccine, the proportion with a positive neutralization response versus placebo was improved for all 3 variants as measured by both assays. Based on the pseudovirus neutralization assay against the Delta variant, 33 of 60 (55%) patients were positive in the mRNA-1273 group versus 10 of 57 (18%) in the placebo group (difference, 37 [95% CI, 19 to 53] percentage points). The differences were 36 (CI, 17 to 51) percentage points for the Alpha variant and 31 (CI, 15 to 46) percentage points for the Beta variant. In the mRNA-1273 group, lower neutralization values were observed for variants compared with wild-type virus, especially the Beta variant.LimitationsThere is no clear correlate of protection for neutralizing antibody. This was a secondary analysis.ConclusionIn organ transplant recipients, a third dose of mRNA vaccine increases neutralizing antibody response against SARS-CoV-2 variants compared with placebo.Primary funding sourceAjmera Transplant Centre.
Project description:Solid organ transplant recipients (SOTRs) show higher rates of COVID-19 breakthrough infection than the general population, and nowadays, vaccination is the key preventative strategy. Nonetheless, SOTRs show lower vaccine efficacy for the prevention of severe COVID-19. Moreover, the emergence of new SARS-CoV-2 variants of concern has highlighted the need to improve vaccine-induced immune responses by the administration of repeated booster doses. In this study, we analyzed the humoral and cellular responses in a cohort of 25 SOTRs, including 15 never-infected SOTRs who received the fourth dose of the mRNA vaccine and 10 SOTRs who contracted SARS-CoV-2 infection after the third dose. We analyzed the serum IgG and IgA levels through CLIA or ELISA, respectively, and the Spike-specific T cells by ELISpot assay. We report a significant increase in anti-Spike IgG and no differences in IgA secretion in both groups of patients before and after the booster dose or the natural infection. Still, we show higher IgA levels in recovered SOTRs compared to the fourth dose recipients. Conversely, we show the maintenance of a positive Spike-specific T-cell response in SOTRs who received the fourth dose, which, instead, was significantly increased in SOTRs who contracted the infection. Our results suggest that the booster, either through the fourth dose or natural infection, in vulnerable poor responder SOTRs, improves both humoral and cellular-specific immune responses against SARS-CoV-2.