Project description:Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.
Project description:Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron-hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators.
Project description:In this work, a class of metamaterials is proposed on the basis of ferromagnet/superconductor hybridization for applications in magnonics. These metamaterials comprise of a ferromagnetic magnon medium that is coupled inductively to a superconducting periodic microstructure. Spectroscopy of magnetization dynamics in such hybrid evidences formation of areas in the medium with alternating dispersions for spin wave propagation, which is the basic requirement for the development of metamaterials known as magnonic crystals. The spectrum allows for derivation of the impact of the superconducting structure on the dispersion: it takes place due to a diamagnetic response of superconductors on the external and stray magnetic fields. In addition, the spectrum displays a dependence on the superconducting critical state of the structure: the Meissner and the mixed states of a type II superconductor are distinguished. This dependence hints toward nonlinear response of hybrid metamaterials on the magnetic field. Investigation of the spin wave dispersion in hybrid metamaterials shows formation of allowed and forbidden bands for spin wave propagation. The band structures are governed by the geometry of spin wave propagation: in the backward volume geometry the band structure is conventional, while in the surface geometry the band structure is nonreciprocal and is formed by indirect band gaps.
Project description:A fundamental obstacle for achieving quantum computation is local decoherence. One way to circumvent this problem rests on the concepts of topological quantum computation using non-local information storage, for example on pairs of Majorana fermions (MFs). The arguably most promising way to generate MFs relies at present on spin-triplet p-wave states of superconductors (SC), which are not abundant in nature, unfortunately. Thus, proposals for their engineering in devices, usually via proximity effect from a conventional SC into materials with strong spin-orbit coupling (SOC), are intensively investigated nowadays. Here we take an alternative path, exploiting the different connections between fields based on a quartet coupling rule for fields introduced by one of us, we demonstrate that, for instance, coexisting Zeeman field with a charge current would provide the conditions to induce p-wave pairing in the presence of singlet superconductivity. This opens new avenues for the engineering of robust MFs in various, not necessarily (quasi-)one-dimensional, superconductor-ferromagnet heterostructures, including such motivated by recent pioneering experiments that report MFs, in particular, without the need of any exotic materials or special structures of intrinsic SOC.
Project description:A case study of electron tunneling or charge-transfer-driven orbital ordering in superconductor (SC)-ferromagnet (FM) interfaces has been conducted in heteroepitaxial YBa2Cu3O7(YBCO)/La0.67Sr0.33MnO3(LSMO) multilayers interleaved with and without an insulating SrTiO3(STO) layer between YBCO and LSMO. X-ray magnetic circular dichroism experiments revealed anti-parallel alignment of Mn magnetic moments and induced Cu magnetic moments in a YBCO/LSMO multilayer. As compared to an isolated LSMO layer, the YBCO/LSMO multilayer displayed a (50%) weaker Mn magnetic signal, which is related to the usual proximity effect. It was a surprise that a similar proximity effect was also observed in a YBCO/STO/LSMO multilayer, however, the Mn signal was reduced by 20%. This reduced magnetic moment of Mn was further verified by depth sensitive polarized neutron reflectivity. Electron energy loss spectroscopy experiment showed the evidence of Ti magnetic polarization at the interfaces of the YBCO/STO/LSMO multilayer. This crossover magnetization is due to a transfer of interface electrons that migrate from Ti(4+)-? to Mn at the STO/LSMO interface and to Cu2+ at the STO/YBCO interface, with hybridization via O 2p orbitals. So charge-transfer driven orbital ordering is the mechanism responsible for the observed proximity effect and Mn-Cu anti-parallel coupling in YBCO/STO/LSMO. This work provides an effective pathway in understanding the aspect of long range proximity effect and consequent orbital degeneracy parameter in magnetic coupling.
Project description:Magnetic damping is a key metric for emerging technologies based on magnetic nanoparticles, such as spin torque memory and high-resolution biomagnetic imaging. Despite its importance, understanding of magnetic dissipation in nanoscale ferromagnets remains elusive, and the damping is often treated as a phenomenological constant. Here, we report the discovery of a giant frequency-dependent nonlinear damping that strongly alters the response of a nanoscale ferromagnet to spin torque and microwave magnetic field. This damping mechanism originates from three-magnon scattering that is strongly enhanced by geometric confinement of magnons in the nanomagnet. We show that the giant nonlinear damping can invert the effect of spin torque on a nanomagnet, leading to an unexpected current-induced enhancement of damping by an antidamping torque. Our work advances the understanding of magnetic dynamics in nanoscale ferromagnets and spin torque devices.
Project description:A 3.5 nm amorphous CoFeB film was sputtered on GaAs (001) wafer substrate without applying magnetic field during deposition, and a significant in-plane uniaxial magnetic anisotropy (UMA) field (Hu) of about 300 Oe could be achieved. To precisely determine the intrinsic Gilbert damping constant (α) of this film, both ferromagnetic resonance (FMR) and time-resolved magneto-optical Kerr effect (TRMOKE) techniques were utilized. With good fitting of the dynamic spectra of FMR and TRMOKE, α is calculated to be 0.010 and 0.013, respectively. Obviously, the latter is 30% larger than the former, which is due to the transient heating effect during the TRMOKE measurement. In comparison with ordinary amorphous CoFeB films with negligible magnetic anisotropies, α is enhanced significantly in the CoFeB/GaAs(001) film, which may be mainly resulted from the enhanced spin-orbit coupling induced by the CoFeB/GaAs interface. However, the significant in-plane UMA plays minor role in the enhancement of α.
Project description:The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant to developing future fast switching spintronics devices such as magnetic sensors and magnetic random access memory. Here, we report an experimental study of temperature-dependent Gilbert damping in permalloy (Py) thin films of varying thicknesses by ferromagnetic resonance. From the thickness dependence, two independent contributions to the Gilbert damping are identified, namely bulk damping and surface damping. Of particular interest, bulk damping decreases monotonically as the temperature decreases, while surface damping shows an enhancement peak at the temperature of ~50 K. These results provide an important insight to the physical origin of the Gilbert damping in ultrathin magnetic films.
Project description:The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces.
Project description:We report ultralow intrinsic magnetic damping in Co25Fe75 heterostructures, reaching the low 10-4 regime at room temperature. By using a broadband ferromagnetic resonance technique in out-of-plane geometry, we extracted the dynamic magnetic properties of several Co25Fe75-based heterostructures with varying ferromagnetic layer thicknesses. By measuring radiative damping and spin pumping effects, we found the intrinsic damping of a 26 nm thick sample to be α0 ≲ 3.18 × 10-4. Furthermore, using Brillouin light scattering microscopy, we measured spin-wave propagation lengths of up to (21 ± 1) μm in a 26 nm thick Co25Fe75 heterostructure at room temperature, which is in excellent agreement with the measured damping.