Project description:This study aimed to investigate the prevalence and characterization of tet(X4) in Escherichia coli isolates from a pig farm in Shanghai, China, and to elucidate tet(X4) dissemination mechanism in this swine farm. Forty-nine (80.33%) E. coli strains were isolated from 61 samples from a pig farm and were screened for the presence of tet(X). Among them, six (12.24%) strains were positive for tet(X4) and exhibited resistance to tigecycline (MIC ≥ 16 mg/L). They were further sequenced by Illumina Hiseq. Six tet(X4)-positive strains belonged to ST761 with identical resistance genes, resistance profiles, plasmid replicons, and cgMLST type except that additional ColE10 plasmid was present in isolate SH21PTE35. Isolate SH21PTE31, as a representative ST761 E. coli strain, was further sequenced using Nanopore MinION. The tet(X4) in SH21PTE31 was located on IncFIA18/IncFIB(K)/IncX1 hybrid plasmid pYUSHP31-1, highly similar to other tet(X4)-carrying IncFIA18/IncFIB(K)/IncX1 plasmids from ST761 E. coli and other E. coli lineages in China. These IncFIA18/IncFIB(K)/IncX1 plasmids shared closely related multidrug resistance regions, and could reorganize, acquire or lose resistance modules mediated by mobile elements such as ISCR2 and IS26. Phylogenetic analysis were performed including all tet(X4)-positive isolates obtained in this pig farm combined with 43 tet(X4)-positive E. coli from pigs, cow, pork, wastewater, and patients with the same ST from NCBI. The 50 tet(X4)-carrying E. coli ST761 isolates from different areas in China shared a close phylogenetic relationship (0-49 SNPs). In conclusion, clonal transmission of tet(X4)-positive E. coli ST761 has occurred in this swine farm. E. coli ST761 has the potential to become a high-risk clone for tet(X4) dissemination in China.
Project description:The recent emergence of plasmid-mediated tigecycline resistance genes, tet(X3) and tet(X4), in animals and humans in China would pose a foreseeable threat to public health. To illustrate this paradigm shift in tigecycline resistance, here, covering the period 2008-2018, we retrospectively analysed a national strain collection of Escherichia coli (n = 2254), obtained from chickens and pigs, in six representative provinces of China. The gene tet(X4) was identified in five pig isolates collected in 2016 and 2018 from the provinces of Sichuan (3/15, 2018), Henan (1/25, 2018) and Guangdong (1/28, 2016), but not in the isolates prior to 2016. None of the isolates was detected harbouring tet(X3). All tet(X4)-positive E. coli exhibited high levels of tigecycline resistance (MICs, 16-64 mg/L), and two were confirmed as colistin resistant, harbouring chromosome-borne mcr-1 gene. The gene tet(X4) was detected on a plasmid in all five isolates, whereas a co-location of tet(X4) on the chromosome of one isolate was observed. Diverse host strains and novel plasmids related to the tet(X4) gene were observed. Our timely findings of the recent emergence of tet(X4) gene in food animal support the rapid surveillance and eradication of this gene before it is established.
Project description:Public health interventions to control the recent emergence of plasmid-mediated tigecycline resistance genes rely on a comprehensive understanding of its epidemiology and distribution over a wide range of geographical scales. Here we analysed an Escherichia coli collection isolated from pigs and chickens in China in 2018, and ascertained that the tet(X4) gene was not present at high prevalence across China, but was highly endemic in northwestern China. Genomic analysis of tet(X4)-positive E. coli demonstrated a recent and regional dissemination of tet(X4) among various clonal backgrounds and plasmids in northwestern China, whereas a parallel epidemic coincided with the independent acquisition of tet(X4) in E. coli from the remaining provinces. The high genetic similarity of tet(X4)-positive E. coli and human commensal E. coli suggests the possibility of its spreading into humans. Our study provides a systematic analysis of the current epidemiology of tet(X4) and identifies priorities for optimising timely intervention strategies.
Project description:Emergence of pathogens harboring tigecycline resistance genes incurs great concerns. Wastewater is recognized as the important reservoir of antimicrobial resistance genes. Here we characterized the phenotypes and genotypes of bacteria carrying tet(X4) from wastewater in Turkey for the first time. Four tet(X4)-positive Escherichia coli isolates were identified and characterized by PCR, Sanger sequencing, antimicrobial susceptibility testing, conjugation assays, Illumina sequencing, nanopore sequencing and bioinformatic analysis. Four tet(X4)-harboring isolates were multidrug-resistant (MDR) bacteria and the tet(X4) gene was nontransferable in four isolates. Genetic analysis revealed that tet(X4) genes in four isolates were located on plasmids co-harboring two replicons IncFIA(HI1) and IncFIB(K). However, none of the four plasmids carried genes associated with horizontal transfer of plasmids. The coexistence of blaSHV-12-bearing IncX3-type plasmid and tet(X4)-harboring plasmid was also found in one isolate. These findings indicate that continuous surveillance of the tet(X4)-bearing isolates in different environments worldwide should be strengthened. IMPORTANCE The emergence of tigecycline resistance genes in humans and animals in China seriously threatens the clinical utility of tigecycline, but the molecular epidemiology of tigecycline-resistant bacteria in other countries remained largely unknown. Therefore, it is necessary to learn the prevalence and molecular characteristics of bacteria carrying tigecycline resistance genes, particularly the mobilizable tet(X4), in other countries. In the study, we first described the presence and molecular characteristics of the tet(X4)-positive E. coli isolates from wastewater in Turkey. Four tet(X4)-bearing isolates belonged to ST609, an E. coli clone commonly found from humans, animals and the environment. These findings highlight the importance of monitoring the tet(X4) gene in different settings globally.
Project description:We isolated 47 Acinetobacter strains carrying tet(X3) and 4 ST767 E. coli strains carrying tet(X4) from 296 rectal swab samples from dairy cows on a Chinese farm. tet(X3) was located on chromosomes or diverse plasmids, and tet(X4) was located on IncFIBκ/FIA(HI1)/X1 nontransferable plasmid. The coexistence of tet(X3) and carbapenemase genes, including blaOXA-58 and blaNDM-1, was detected in 9 Acinetobacter spp. These findings suggested that the use of tetracycline and other antibiotics in food production warrants urgent attention.
Project description:Tigecycline resistance in bacteria has become a significant threat to food safety and public health, where the development of which is attributed to plasmid-mediated tet(X4) genes. In this study, the genomes of 613 tet(X4)-producing Escherichia coli (E. coli) isolates, available from public databases, are evaluated to determine their international prevalence and molecular characterization. These E. coli isolates have been disseminated in 12 countries across Asia and Europe. It was found that pigs and their products (n = 162) were the most common vehicle, followed by humans (n = 122), chickens (n = 60), and the environment (n = 49). Carbapenems-resistant genes blaNDM-5 (1.3%) and blaNDM-1 (0.2%) were identified, as well as colistin-resistant genes mcr-1.1 (12.6%) and mcr-3.1 (0.5%). It was noted that the tigecycline-resistant gene cluster tmexC-tmexD-toprJ1 was identified in seven (1.1%) isolates. Phylogenomic results indicated that tet(X4)-producing E. coli isolates fell into seven lineages (lineages I, II, III, IV, V, VI, and VII), and international spread mainly occurred in Asian countries, especially China, Pakistan, Singapore, and Malaysia. Four forms of tet(X4) transposon units were found, including the I-type (IS26-tet(X4)-ISCR2), II-type (ΔIS1R-tet(X4)-ISCR2), III-type (ISCR2-tet(X4)-ISCR2), and IV-type (ISCR2-tet(X4)-ΔISCR2). These findings underline further challenges for the spread of E. coli bearing tet(X4) gene.
Project description:The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as blaNDM-1 and cfr. Additionally, we were the first to report that tet(X4) and blaNDM-1 coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10-2 to 10-7. These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms.
Project description:The plasmid-mediated high-level tigecycline resistance gene, tet(X4), was detected in seven Escherichia coli isolates from pork in two Chinese provinces. Two isolates belonged to the epidemic spreading sequence type ST101. Tet(X4) was adjacent to ISVsa3 and concurrent with floR in all seven isolates. In addition to IncFIB, the replicon IncFII was found to be linked to tet(X4). This report follows a recent detection of tet(X3)/(X4) in E. coli from animals and humans in China.
Project description:The tet(X4) gene is a clinically important tigecycline resistance gene and has shown high persistence in livestock-related environments. However, the bacterial hosts of tet(X4) remain unknown due to the lack of appropriate approaches. Herein, a culture-independent and high-throughput epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction) method was developed, optimized, and demonstrated for the identification of bacterial hosts carrying tet(X4) from environmental samples. Considering the high sequence similarity between tet(X4) and other tet(X)-variant genes, specific primers and amplification conditions were screened and optimized to identify tet(X4) accurately and link tet(X4) with the 16S rRNA gene, which were further validated using artificially constructed bacterial communities. The epicPCR targeting tet(X4) was applied for the identification of bacterial hosts carrying this resistance gene in anaerobic digestion systems treating swine manure. A total of 19 genera were identified as tet(X4) hosts, which were distributed in the phyla Proteobacteria, Bacteroidota, Firmicutes, and Caldatribacteriota. Sixteen genera and two phyla that were identified have not been previously reported as tet(X4) bacterial hosts. The results indicated that a far more diverse range of bacteria was involved in harboring tet(X4) than previously realized. Compared with the tet(X4) hosts determined by correlation-based network analysis and metagenomic binning, epicPCR revealed a high diversity of tet(X4) hosts even at the phylum level. The epicPCR method developed in this study could be effectively employed to reveal the presence of tet(X4) bacterial hosts from a holistic viewpoint.