Unknown

Dataset Information

0

Ca2+ administration prevents α-synuclein proteotoxicity by stimulating calcineurin-dependent lysosomal proteolysis.


ABSTRACT: The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis. Heterologous expression of human α-synuclein (αSyn), a protein critically linked to Parkinson's disease, selectively increases total cellular Ca2+ content, while the levels of manganese and iron remain unchanged. Disrupted Ca2+ homeostasis results in inhibition of the lysosomal protease cathepsin D and triggers premature cellular and organismal death. External administration of Ca2+ reduces αSyn oligomerization, stimulates cathepsin D activity and in consequence restores survival, which critically depends on the Ca2+/calmodulin-dependent phosphatase calcineurin. In flies, increasing the availability of Ca2+ discloses a neuroprotective role of αSyn upon manganese overload. In sum, we establish a molecular interplay between cathepsin D and calcineurin that can be activated by Ca2+ administration to counteract αSyn proteotoxicity.

SUBMITTER: Habernig L 

PROVIDER: S-EPMC8629384 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ca2+ administration prevents α-synuclein proteotoxicity by stimulating calcineurin-dependent lysosomal proteolysis.

Habernig Lukas L   Broeskamp Filomena F   Aufschnaiter Andreas A   Diessl Jutta J   Peselj Carlotta C   Urbauer Elisabeth E   Eisenberg Tobias T   de Ory Ana A   Büttner Sabrina S  

PLoS genetics 20211115 11


The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boost  ...[more]

Similar Datasets

| S-EPMC5452425 | biostudies-literature
| S-EPMC2859524 | biostudies-literature
| S-EPMC4151770 | biostudies-literature
| S-EPMC11192938 | biostudies-literature
| S-EPMC11334933 | biostudies-literature
| S-EPMC11910603 | biostudies-literature
| S-EPMC8576194 | biostudies-literature
| S-EPMC6750954 | biostudies-literature
| S-EPMC10254247 | biostudies-literature
| S-EPMC8233769 | biostudies-literature