Project description:Leaves acclimate to day-to-day fluctuating levels of photosynthetic photon flux density (PPFD) by adjusting their morphological and physiological parameters. Accurate estimation of these parameters under day-to-day fluctuating PPFD conditions benefits crop growth modeling and light environment management in greenhouses, although it remains challenging. We quantified the relationships between day-to-day PPFD changes over 6 days and light acclimation parameters for cucumber seedling leaves, including leaf mass per area (LMA), chlorophyll (Chl) a/b ratio, maximum net photosynthetic rate (P nmax), maximum rate of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (V cmax), and maximum rate of electron transport (J max). The last two parameters reflect the capacity of the photosynthetic partial reactions. We built linear regression models of these parameters based on average or time-weighted averages of daily PPFDs. For time-weighted averages of daily PPFDs, the influence of daily PPFD was given a specific weight. We employed three types of functions to calculate this weight, including linear, quadratic, and sigmoid derivative types. We then determined the trend of weights that estimated each parameter most accurately. Moreover, we introduced saturating functions to calibrate the average or time-weighted averages of daily PPFDs, considering that light acclimation parameters are usually saturated under high PPFDs. We found that time-weighted average PPFDs, in which recent PPFD levels had larger weights than earlier levels, better estimated LMA than average PPFDs. This suggests that recent PPFDs contribute more to LMA than earlier PPFDs. Except for the Chl a/b ratio, the average PPFDs estimated P nmax, V cmax, and J max with acceptable accuracy. In contrast, time-weighted averages of daily PPFDs did not improve the estimation accuracy of these four parameters, possibly due to their low response rates and plasticity. Calibrating functions generally improved estimation of Chl a/b ratio, V cmax, and J max because of their saturating tendencies under high PPFDs. Our findings provide a reasonable approach to quantifying the extent to which the leaves acclimate to day-to-day fluctuating PPFDs, especially the extent of LMA.
Project description:A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.Hirsch, Robert M., Douglas L. Moyer, and Stacey A. Archfield, 2010. Weighted Regressions on Time, Discharge, and Season (WRTDS), With an Application to Chesapeake Bay River Inputs. Journal of the American Water Resources Association (JAWRA) 46(5):857-880. DOI: 10.1111/j.1752-1688.2010.00482.x.
Project description:BackgroundGenomic selection has been successfully implemented in many livestock and crop species. The genomic best linear unbiased predictor (GBLUP) approach, assigning equal variance to all SNP effects, is one of the reference methods. When large-effect variants contribute to complex traits, it has been shown that genomic prediction methods that assign a higher variance to subsets of SNP effects can achieve higher prediction accuracy. We herein compared the efficiency of several such approaches, including the Adaptive MultiBLUP (AM-BLUP) that uses local genomic relationship matrices (GRM) to automatically identify and weight genomic regions with large effects, to predict genetic merit in Belgian Blue beef cattle.ResultsWe used a population of approximately 10,000 genotyped cows and their phenotypes for 14 traits, mostly related to muscular development and body dimensions. According to the trait, we found that 4 to 25% of the genetic variance could be associated with 2 to 12 genomic regions harbouring large-effect variants. Noteworthy, three previously identified recessive deleterious variants presented heterozygote advantage and were among the most significant SNPs for several traits. The AM-BLUP resulted in increased reliability of genomic predictions compared to GBLUP (+ 2%), but Bayesian methods proved more efficient (+ 3%). Overall, the reliability gains remained thus limited although higher gains were observed for skin thickness, a trait affected by two genomic regions having particularly large effects. Higher accuracies than those from the original AM-BLUP were achieved when applying the Bayesian Sparse Linear Mixed Model to pre-select groups of SNPs with large effects and subsequently use their estimated variance to build a weighted GRM. Finally, the single-step GBLUP performed best and could be further improved (+ 3% prediction accuracy) by using these weighted GRM.ConclusionsThe AM-BLUP is an attractive method to automatically identify and weight genomic regions with large effects on complex traits. However, the method was less accurate than Bayesian methods. Overall, weighted methods achieved modest accuracy gains compared to GBLUP. Nevertheless, the computational efficiency of the AM-BLUP might be valuable at higher marker density, including with whole-genome sequencing data. Furthermore, weighted GRM are particularly useful to account for large variance loci in the single-step GBLUP.
Project description:Complex disease is largely determined by a number of biomolecules interwoven into networks, rather than a single biomolecule. A key but inadequately addressed issue is how to test possible differences of the networks between two groups. Group-level comparison of network properties may shed light on underlying disease mechanisms and benefit the design of drug targets for complex diseases. We therefore proposed a powerful score-based statistic to detect group difference in weighted networks, which simultaneously capture the vertex changes and edge changes.Simulation studies indicated that the proposed network difference measure (NetDifM) was stable and outperformed other methods existed, under various sample sizes and network topology structure. One application to real data about GWAS of leprosy successfully identified the specific gene interaction network contributing to leprosy. For additional gene expression data of ovarian cancer, two candidate subnetworks, PI3K-AKT and Notch signaling pathways, were considered and identified respectively.The proposed method, accounting for the vertex changes and edge changes simultaneously, is valid and powerful to capture the group difference of biological networks.
Project description:BackgroundIdentification of differentially expressed genes (DEGs) under different experimental conditions is an important task in many microarray studies. However, choosing which method to use for a particular application is problematic because its performance depends on the evaluation metric, the dataset, and so on. In addition, when using the Affymetrix GeneChip(R) system, researchers must select a preprocessing algorithm from a number of competing algorithms such as MAS, RMA, and DFW, for obtaining expression-level measurements. To achieve optimal performance for detecting DEGs, a suitable combination of gene selection method and preprocessing algorithm needs to be selected for a given probe-level dataset.ResultsWe introduce a new fold-change (FC)-based method, the weighted average difference method (WAD), for ranking DEGs. It uses the average difference and relative average signal intensity so that highly expressed genes are highly ranked on the average for the different conditions. The idea is based on our observation that known or potential marker genes (or proteins) tend to have high expression levels. We compared WAD with seven other methods; average difference (AD), FC, rank products (RP), moderated t statistic (modT), significance analysis of microarrays (samT), shrinkage t statistic (shrinkT), and intensity-based moderated t statistic (ibmT). The evaluation was performed using a total of 38 different binary (two-class) probe-level datasets: two artificial "spike-in" datasets and 36 real experimental datasets. The results indicate that WAD outperforms the other methods when sensitivity and specificity are considered simultaneously: the area under the receiver operating characteristic curve for WAD was the highest on average for the 38 datasets. The gene ranking for WAD was also the most consistent when subsets of top-ranked genes produced from three different preprocessed data (MAS, RMA, and DFW) were compared. Overall, WAD performed the best for MAS-preprocessed data and the FC-based methods (AD, WAD, FC, or RP) performed well for RMA and DFW-preprocessed data.ConclusionWAD is a promising alternative to existing methods for ranking DEGs with two classes. Its high performance should increase researchers' confidence in microarray analyses.
Project description:Our recognition of familiar faces is excellent, and generalises across viewing conditions. However, unfamiliar face recognition is much poorer. For this reason, automatic face recognition systems might benefit from incorporating the advantages of familiarity. Here we put this to the test using the face verification system available on a popular smartphone (the Samsung Galaxy). In two experiments we tested the recognition performance of the smartphone when it was encoded with an individual's 'face-average'--a representation derived from theories of human face perception. This technique significantly improved performance for both unconstrained celebrity images (Experiment 1) and for real faces (Experiment 2): users could unlock their phones more reliably when the device stored an average of the user's face than when they stored a single image. This advantage was consistent across a wide variety of everyday viewing conditions. Furthermore, the benefit did not reduce the rejection of imposter faces. This benefit is brought about solely by consideration of suitable representations for automatic face recognition, and we argue that this is just as important as development of matching algorithms themselves. We propose that this representation could significantly improve recognition rates in everyday settings.
Project description:Exposure to heavy metals could lead to adverse health effects by oxidative reactions or inflammation. Some essential elements are known as reactors of anti-inflammatory enzymes or coenzymes. The relationship between tumor necrosis factor alpha (TNF-α) and heavy metal exposures was reported. However, the interaction between toxic metals and essential elements in the inflammatory response remains unclear. This study aimed to explore the association between arsenic (As), cadmium (Cd), lead (Pb), cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) in blood and TNF-α as well as kidney function. We enrolled 421 workers and measured the levels of these seven metals/metalloids and TNF-α in blood; kidney function was calculated by CKD-EPI equation. We applied weighted quantile sum (WQS) regression and group WQS regression to assess the effects of metal/metalloid mixtures to TNF-α and kidney function. We also approached the relationship between metals/metalloids and TNF-α by generalized additive models (GAM). The relationship of the exposure-response curve between Pb level and TNF-α in serum was found significantly non-linear after adjusting covariates (p < 0.001). Within the multiple-metal model, Pb, As, and Zn were associated with increased TNF-α levels with effects dedicated to the mixture of 50%, 31%, and 15%, respectively. Grouped WQS revealed that the essential metal group showed a significantly negative association with TNF-α and kidney function. The toxic metal group found significantly positive associations with TNF-α, serum creatinine, and WBC but not for eGFR. These results suggested Pb, As, Zn, Se, and mixtures may act on TNF-α even through interactive mechanisms. Our findings offer insights into what primary components of metal mixtures affect inflammation and kidney function during co-exposure to metals; however, the mechanisms still need further research.
Project description:Methodology of sufficient dimension reduction (SDR) has offered an effective means to facilitate regression analysis of high-dimensional data. When the response is censored, however, most existing SDR estimators cannot be applied, or require some restrictive conditions. In this article, we propose a new class of inverse censoring probability weighted SDR estimators for censored regressions. Moreover, regularization is introduced to achieve simultaneous variable selection and dimension reduction. Asymptotic properties and empirical performance of the proposed methods are examined.
Project description:The largest megalake in the geological record formed in Eurasia during the late Miocene, when the epicontinental Paratethys Sea became tectonically-trapped and disconnected from the global ocean. The megalake was characterized by several episodes of hydrological instability and partial desiccation, but the chronology, magnitude and impacts of these paleoenvironmental crises are poorly known. Our integrated stratigraphic study shows that the main desiccation episodes occurred between 9.75 and 7.65 million years ago. We identify four major regressions that correlate with aridification events, vegetation changes and faunal turnovers in large parts of Europe. Our paleogeographic reconstructions reveal that the Paratethys was profoundly transformed during regression episodes, losing ~ 1/3 of the water volume and ~ 70% of its surface during the most extreme events. The remaining water was stored in a central salt-lake and peripheral desalinated basins while vast regions (up to 1.75 million km2) became emergent land, suitable for development of forest-steppe landscapes. The partial megalake desiccations match with climate, food-web and landscape changes throughout Eurasia, although the exact triggers and mechanisms remain to be resolved.
Project description:Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts.