Subduction zone fluids and arc magmas conducted by lithospheric deformed regions beneath the central Andes.
Ontology highlight
ABSTRACT: Dehydration of the oceanic subducting slab promotes the formation of magmatic arcs, intra-slab intermediate-depth seismicity, and hydration of the overlying mantle wedge. However, the complex permeability structure of the overriding plate controls the magma and fluid migration and their accumulation at shallower depths. In this regard, mapping the inner structure of the overriding crust and mantle is crucial to understand the magmatic and hydrological processes in subduction zones. We integrate 3-D P-wave, [Formula: see text], and electrical resistivity tomographic models of the northern Chilean subduction zone to map the magmatic and fluids derived from the subducting oceanic Nazca plate. Results show a continental crust relatively thick (50-65 km) characterized by a lower zone of high [Formula: see text] values (7.2-7.6 km/s), which is interpreted as the presence of plutonic rocks. The mantle lithospheric wedge is weakly hydrated ([Formula: see text] = 1.75-1.8) while the forearc continental crust is traversed by regions of reduced electrical resistivity values ([Formula: see text] [Formula: see text]) interpreted as zones of relatively high permeability/fracturing and fluid content. These regions spatially correlate with upper plate trans-lithospheric deformation zones. Ascending melts accumulate preferentially in the back-arc, whereas hydrothermal systems form trenchward of the volcanic arc. The results highlight the complex permeability structure of the upper South American plate.
Project description:The Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.
Project description:Long-standing debates exist over the timing and mechanism of uplift of the Tibetan Plateau and, more specifically, over the connection between lithospheric evolution and surface expressions of plateau uplift and volcanism. Here we show a T-shaped high wave speed structure in our new tomographic model beneath South-Central Tibet, interpreted as an upper-mantle remnant from earlier lithospheric foundering. Its spatial correlation with ultrapotassic and adakitic magmatism supports the hypothesis of convective removal of thickened Tibetan lithosphere causing major uplift of Southern Tibet during the Oligocene. Lithospheric foundering induces an asthenospheric drag force, which drives continued underthrusting of the Indian continental lithosphere and shortening and thickening of the Northern Tibetan lithosphere. Surface uplift of Northern Tibet is subject to more recent asthenospheric upwelling and thermal erosion of thickened lithosphere, which is spatially consistent with recent potassic volcanism and an imaged narrow low wave speed zone in the uppermost mantle.
Project description:Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.
Project description:Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.
Project description:Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO4) and dissolved SO42- in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe3+/?Fe in spinel record a S6+-Fe2+ redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and ?34S (+?7 to +?11‰), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas.
Project description:Indian continental subduction can explain Cenozoic crustal deformation, magmatic activity and uplift of the Tibetan Plateau following the India-Asia collision. In the western Himalayan syntaxis and central Himalaya, subduction or underthrusting of the Indian Plate beneath the Eurasian Plate is well known from seismological studies. However, because information on the deep structure of the eastern Himalayan syntaxis is lacking, the nature of the Indian subduction slab beneath Myanmar and the related tectonic regime remain unclear. Here, we use receiver function common conversion point imaging from a densely spaced seismic array to detect direct structural evidence of present-day Indian continental subduction beneath Asia. The entire subducting Indian crust has an average crustal thickness of ~30?km, dips at an angle of ~19°, and extends to a depth of 100?km under central Myanmar. These results reveal a unique continental subduction regime as a result of Indian-Eurasian continental collision and lateral extrusion.
Project description:Interaction between magma and crustal carbonate at active arc volcanoes has recently been proposed as a source of atmospheric CO2, in addition to CO2 released from the mantle and subducted oceanic crust. However, quantitative constraints on efficiency and timing of these processes are poorly established. Here, we present the first in situ carbon and oxygen isotope data of texturally distinct calcite in calc-silicate xenoliths from arc volcanics in a case study from Merapi volcano (Indonesia). Textures and C-O isotopic data provide unique evidence for decarbonation, magma-fluid interaction, and the generation of carbonate melts. We report extremely light δ13CPDB values down to -29.3‰ which are among the lowest reported in magmatic systems so far. Combined with the general paucity of relict calcite, these extremely low values demonstrate highly efficient remobilisation of crustal CO2 over geologically short timescales of thousands of years or less. This rapid release of large volumes of crustal CO2 may impact global carbon cycling.
Project description:Previous investigation of seismic anisotropy indicates the presence of a simple mantle flow regime beneath the Turkish-Anatolian Plateau and Arabian Plate. Numerical modeling suggests that this simple flow is a component of a large-scale global mantle flow associated with the African superplume, which plays a key role in the geodynamic framework of the Arabia-Eurasia continental collision zone. However, the extent and impact of the flow pattern farther east beneath the Iranian Plateau and Zagros remains unclear. While the relatively smoothly varying lithospheric thickness beneath the Anatolian Plateau and Arabian Plate allows progress of the simple mantle flow, the variable lithospheric thickness across the Iranian Plateau is expected to impose additional boundary conditions on the mantle flow field. In this study, for the first time, we use an unprecedented data set of seismic waveforms from a network of 245 seismic stations to examine the mantle flow pattern and lithospheric deformation over the entire region of the Iranian Plateau and Zagros by investigation of seismic anisotropy. We also examine the correlation between the pattern of seismic anisotropy, plate motion using GPS velocities and surface strain fields. Our study reveals a complex pattern of seismic anisotropy that implies a similarly complex mantle flow field. The pattern of seismic anisotropy suggests that the regional simple mantle flow beneath the Arabian Platform and eastern Turkey deflects as a circular flow around the thick Zagros lithosphere. This circular flow merges into a toroidal component beneath the NW Zagros that is likely an indicator of a lateral discontinuity in the lithosphere. Our examination also suggests that the main lithospheric deformation in the Zagros occurs as an axial shortening across the belt, whereas in the eastern Alborz and Kopeh-Dagh a belt-parallel horizontal lithospheric deformation plays a major role.