Toll-Like Receptor (TLR) Signaling Enables Cyclic GMP-AMP Synthase (cGAS) Sensing of HIV-1 Infection in Macrophages.
Ontology highlight
ABSTRACT: HIV-1 replicates in cells that express a wide array of innate immune sensors and may do so simultaneously with other pathogens. How a coexisting innate immune stimulus influences the outcome of HIV-1 sensing, however, remains poorly understood. Here, we demonstrate that the activation of a second signaling pathway enables a cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) response to HIV-1 infection. We used RNA sequencing to determine that HIV-1 alone induced few or no signs of an IFN-I response in THP-1 cells. In contrast, when supplemented with suboptimal levels of bacterial lipopolysaccharide (LPS), HIV-1 infection triggered the production of elevated levels of IFN-I and significant upregulation of interferon-stimulated genes. LPS-mediated enhancement of IFN-I production upon HIV-1 infection, which was observed in primary macrophages, was lost by blocking reverse transcription and with a hyperstable capsid, pointing to viral DNA being an essential immunostimulatory molecule. LPS also synergistically enhanced IFN-I production by cyclic GMP-AMP (cGAMP), a second messenger of cGAS. These observations suggest that the DNA sensor cGAS is responsible for a type I IFN response to HIV-1 in concert with LPS receptor Toll-like receptor 4 (TLR4). Small amounts of a TLR2 agonist also cooperate with HIV-1 to induce type I IFN production. These results demonstrate how subtle immunomodulatory activity renders HIV-1 capable of eliciting an IFN-I response through positive cross talk between cGAS and TLR sensing pathways. IMPORTANCE Innate immune activation is a hallmark of HIV-1 pathogenesis. Thus, it is critical to understand how HIV-1 infection elicits innate immune responses. In this work, we show that HIV-1 infection of macrophages leads to a robust type I interferon (IFN) production only when a second signaling event is initiated by a coexisting immunostimulatory molecule. Our results show that HIV-1 infection alone is not sufficient for triggering a strong IFN response. We find that bacterial membrane components, which are recognized by endosomal innate sensors, enable production of elevated levels of IFNs and significant upregulation of interferon-stimulated genes upon HIV-1 infection. This IFN response is dependent on viral DNA synthesis and prevented by a stable capsid, pointing to an essential role for a DNA sensing molecule. These observations provide new insights into how different innate immune recognition pathways synergize during HIV-1 infection and determine the outcome of innate responses.
SUBMITTER: Siddiqui MA
PROVIDER: S-EPMC8630538 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA