Project description:BackgroundWhile the epidemiologic association between hepatitis B virus (HBV) infection and diffuse large B-cell lymphoma (DLBCL) is established, little is known about the pathological characteristics and outcome of DLBCL arising in patients with HBV infection.MethodsWe retrospectively studied a cohort of 420 patients with DLBCL for the incidence of HBV infection, and the clinicopathologic features and prognostic factors in HBsAg-positive DLBCL patients in China, a hepatitis B endemic area.ResultsIn our study, 127 (30.2%) patients were HBsAg-positive. HBsAg-positive DLBCL displayed a younger median onset age (50 vs. 54 years, P = 0.002), more frequent involvement of the spleen (19.7% vs. 6.1%, P < 0.001), less frequent involvement of the small and large intestine (2.3% vs. 11.2%, P = 0.003), more advanced disease (stage III/IV: 56.7% vs. 45.1%, P = 0.028), and lower expression rate of MYC (49.1% vs. 66.7%, P = 0.026). The median follow-up time was 61.9 months. Univariate analysis showed that there was no significant difference in overall survival (OS) between HBsAg-negative and -positive DLBCL (P = 0.577). In the HBsAg-positive DLBCL subgroup, age older than 60 years, advanced disease, elevated lactate dehydrogenase (LDH), spleen involvement, B symptoms (fever, night sweats, weight loss), and double expressers of MYC and BCL2 had a significantly worse outcome, and patients treated with R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) had a better prognosis. Multivariate analysis further confirmed that spleen involvement and rituximab use were independent prognostic factors in HBsAg-positive DLBCL patients.ConclusionsOur study indicates that HBsAg-positive DLBCL has unique clinicopathological features and independent prognostic factors. Moreover, under antiviral prophylaxis, the survival of DLBCL patients with HBV infections was comparable to that of HBV-negative patients, and the use of rituximab significantly improved OS in HBsAg-positive DLBCL patients.
Project description:ObjectiveDe novo CD5-positive (CD5+) diffuse large B-cell lymphoma (DLBCL) has different clinical characteristics compared with CD5-negative (CD5-) DLBCL. However, few studies have been reported in Chinese cohorts. We investigated the clinical features and prognosis of patients with CD5+ DLBCL and summarized the related literature.MethodsData from 245 patients with newly diagnosed DLBCL were retrospectively assessed.ResultsThirty-one and 214 patients were diagnosed with CD5+ DLBCL or CD5- DLBCL, respectively. In the CD5+ DLBCL group, there were significantly higher proportions of patients with older age (≥60 years), International Prognostic Index (IPI) ≥3, Eastern Cooperative Oncology Group (ECOG) scores ≥ 2, bone marrow involvement, positive B-cell lymphoma 2 expression, and positive MYC expression. Survival analysis showed that CD5+ DLBCL had a markedly poorer 2-year progression-free survival than CD5- DLBCL (18.2% vs. 56.2%). Univariate analysis indicated that age ≥60 years, ECOG score ≥ 2, IPI ≥ 3, B symptoms, and no rituximab-based treatment were poor predictive factors for overall survival (OS). Multivariate analysis revealed that B symptoms and no rituximab-based treatment, but not positive CD5 expression, were independent factors for OS.ConclusionsPatients with CD5+ DLBCL had heterogeneous clinical characteristics and poor survival. The development of more targeted and effective therapies is needed.
Project description:Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of large lymphoid B cell malignancy with distinct clinical and genetic features. Recently, NOTCH1 mutations were identified in DLBCL cases by Next-generation sequencing (NGS), but the clinical features and prognostic impact were not systematically studied. Here, NOTCH1 genes in 161 DLBCL samples were sequenced by NGS. The prognostic value of NOTCH1 mutations was assessed in the context of clinical and laboratory factors, such as international prognostic index (IPI), cell-of-origin classification, double expression of BCL2 and c-MYC. The combined data from three Western cohorts were used to validate these results. As a result, NOTCH1 mutations were found in 17(10.6%) patients, and three patients had a hotspot mutation of c.7541_7542delCT. The presence of NOTCH1 mutations was significantly associated with poor complete response and progression free survival(PFS), which was independent of established clinical and laboratory parameters. In addition, 30 (1.92%) of 1562 patients treated with R-CHOP regimen in those combined Western cohorts had NOTCH1 mutations. Meta-analysis of the Western cohorts confirmed that NOTCH1 mutations were also associated with poor PFS and OS. In conclusion, DLBCL patients with the NOTCH1 mutations have worse PFS and OS, and the NOTCH1 mutations can be used as an independent predictor for patients with DLBCL.
Project description:BackgroundCo-stimulatory molecules have been shown to enhance antitumor immune responses, but their role in Diffuse Large B-cell Lymphoma (DLBCL) remains unexplored.MethodsThis study aimed to explore the molecular typing of DLBCL with co-stimulatory molecule genes and to construct a prognostic profile to improve treatment decisions and clinical outcomes.ResultsWe conducted the first comprehensive analysis of co-stimulatory molecules in DLBCL patients and identified five co-stimulatory molecule genes with prognostic and diagnostic values. Consensus cluster analysis based on these five co-stimulatory molecule genes revealed that the two identified clusters had different distribution patterns and prognostic differences. Co-stimulatory molecular correlation signatures were then constructed based on these five co-stimulatory molecular genes and validated in an external dataset, showing good performance in predicting patient prognosis. The signature is an independent risk factor for DLBCL patients and significantly correlates with clinical factors in patients and can be used as a complement to clinical factors. Furthermore, the signature was associated with the tumor immune microenvironment. Patients identified as being at high risk according to our signature exhibit high levels of immune cell infiltration microenvironment.ConclusionsIn conclusion, our signature can provide clinicians with prognostic predictions and help guide the treatment of patients with DLBCL.
Project description:ObjectiveDiffuse large B-cell lymphoma (DLBCL) is a highly aggressive malignant tumor, accounting for 30-40% of non-Hodgkin's lymphoma. Our aim was to construct novel prognostic models of candidate genes based on clinical features.MethodsRNA-seq and clinical data of DLBCL were retrieved from TCGA database. Coexpression modules were constructed by WGCNA. Then, we investigated the interactions between modules and clinical features. By overall survival analysis, prognostic candidate genes from modules of interest were identified. A coexpression network of prognostic candidate genes was then constructed through WGCNA. GEPIA was used to analyze the expression of a candidate gene between DLBCL and normal samples.Results19 coexpression modules were constructed by 12813 genes from 52 DLBCL samples. The number of genes in modules ranged from 34 to 5457. We found that the purple module was significantly related with histological type (p value = 1e-04). Overall survival analysis revealed that MAFA-AS1, hsa-mir-338, and hsa-mir-891a were related with prognosis of DLBCL (p value = 0.027, 0.039, and 0.022, respectively). A coexpression network was constructed for the three prognostic genes. MAFA-AS1 was interacted with 36 genes, hsa-mir-891a was interacted with 11 genes, while no gene showed interaction with hsa-mir-338. Using GEPIA, we found that MAFA-AS1 showed low expression in DLBCL samples (p < 0.01).ConclusionWe constructed a coexpression module related with histological type and identified three candidate genes (MAFA-AS1, hsa-mir-338, and hsa-mir-891a) that possessed potential value as prognostic biomarkers and therapeutic targets of DLBCL.
Project description:The biology and clinical impact of bone marrow (BM) infiltration in patients with diffuse large B-cell lymphoma (DLBCL) remains unclear in the rituximab era. We retrospectively analyzed 232 patients diagnosed with DLBCL at our center between 1999 and 2014. Concordant-presence of large cells similar to those of the lymph node biopsy- and discordant-infiltration by small cells forming lymphoid aggregates, lacking cytological atypia-BM infiltration was defined by histological criteria and further characterized by flow cytometry (FCM). Cell of origin (COO) was determined using Hans' algorithm. For the clonal relationship between tumor and discordant BM, the VDJH rearrangement was analyzed. Survival analyses were restricted to 189 patients treated with rituximab and chemotherapy. Thirty-six (16%) had concordant, and 37 (16%) discordant BM infiltration. FCM described different indolent lymphomas among discordant cases, clonally related with DLBCL in 10/13 available samples. Median follow-up was 58 months. 5-year-progression-free survival (PFS) for non-infiltrated, discordant and concordant groups was 68%, 65% and 30%, respectively (p < 0.001). Combining COO and BM infiltration, patients with discordant BM and non-germinal center B-cell COO also had decreased 5-year-PFS (41.9%). In multivariate analysis, concordant BM had an independent effect on PFS (HR 2.5, p = 0.01). Five-year cumulative incidence of central nervous system (CNS) relapse was 21%, 4% and 1% in concordant, discordant and non-infiltrated groups, respectively (p < 0.001). In conclusion, concordant BM infiltration represents a subset with poor prognosis, whereas the prognostic impact of discordant BM infiltration could be limited to non-CGB cases.
Project description:A number of studies suggest an association between miRNAs and diffuse large B-cell lymphoma (DLBCL). The present study aimed to investigate the prognostic value of microRNA (miR-150) in primary gastrointestinal (PGI)-DLBCL, by assessing the association between miR-150 expression and clinicopathological characteristics in patients with PGI-DLBCL. A total of 84 patients diagnosed with PGI-DLBCL were recruited and both tumor and adjacent non-tumor tissue samples were collected. miR-150 expression was assessed via reverse transcription-quantitative (RT-q)PCR analysis. The results demonstrated that miR-150 expression was significantly lower in PGI-DLBCL tissues compared with adjacent non-tumor tissues. Furthermore, receiver operating characteristic (ROC) curve analysis indicated that the optimal cut-off value of miR-150 for predicting survival was 8.965 with high sensitivity (79.8%) and specificity (77.1%). Patients were divided into two groups according to this cut-off value, as follows: High (n=18) and low expression (n=66) groups. Low miR-150 expression was significantly associated with clinical stage, International Prognostic Index (IPI), Eastern Cooperative Oncology Group status and use of rituximab. RT-qPCR analysis demonstrated that miR-150 expression was significantly lower in patients with high IPI scores compared with patients with low IPI scores. Downregulated miR-150 expression was significantly associated with shorter overall survival (OS) time and progression-free survival (PFS) time in patients with PGI-DLBCL. Furthermore, miR-150 level and IPI score were identified as two risk factors for OS and PFS. The diagnostic value of miR-150 was evaluated via ROC curve analysis, with an area under the curve value of 0.882. Taken together, the results of the present study suggest that miR-150 is a potential diagnostic marker of PGI-DLBCL, and may also serve as a useful prognostic factor for survival outcomes in patients with PGI-DLBCL.
Project description:Current standard of care therapy for diffuse large B-cell lymphoma (DLBCL) cures a majority of patients with additional benefit in salvage therapy and autologous stem cell transplant for patients who relapse. The next generation of prognostic models for DLBCL aims to more accurately stratify patients for novel therapies and risk-adapted treatment strategies. This review discusses the significance of host genetic and tumor genomic alterations seen in DLBCL, clinical and epidemiologic factors, and how each can be integrated into risk stratification algorithms. In the future, treatment prediction and prognostic model development and subsequent validation will require data from a large number of DLBCL patients to establish sufficient statistical power to correctly predict outcome. Novel modeling approaches can augment these efforts.
Project description:This study investigates whether baseline 18F-FDG PET radiomic features can predict survival outcomes in patients with diffuse large B-cell lymphoma (DLBCL). We retrospectively enrolled 83 patients diagnosed with DLBCL who underwent 18F-FDG PET scans before treatment. The patients were divided into the training cohort (n = 58) and the validation cohort (n = 25). Eighty radiomic features were extracted from the PET images for each patient. Least absolute shrinkage and selection operator regression were used to reduce the dimensionality within radiomic features. Cox proportional hazards model was used to determine the prognostic factors for progression-free survival (PFS) and overall survival (OS). A prognostic stratification model was built in the training cohort and validated in the validation cohort using Kaplan-Meier survival analysis. In the training cohort, run length non-uniformity (RLN), extracted from a gray level run length matrix (GLRLM), was independently associated with PFS (hazard ratio (HR) = 15.7, p = 0.007) and OS (HR = 8.64, p = 0.040). The International Prognostic Index was an independent prognostic factor for OS (HR = 2.63, p = 0.049). A prognostic stratification model was devised based on both risk factors, which allowed identification of three risk groups for PFS and OS in the training (p < 0.001 and p < 0.001) and validation (p < 0.001 and p = 0.020) cohorts. Our results indicate that the baseline 18F-FDG PET radiomic feature, RLNGLRLM, is an independent prognostic factor for survival outcomes. Furthermore, we propose a prognostic stratification model that may enable tailored therapeutic strategies for patients with DLBCL.
Project description:BackgroundThe International Prognostic Index (IPI) is widely used to discriminate the prognosis of patients with diffuse large B-cell lymphoma (DLBCL). However, there is a significant need to identify novel valuable biomarkers in the context of targeted therapy, such as immune checkpoint blockade (ICB).MethodsGene expression data and clinical DLBCL information were obtained from The Cancer Genome Atlas and Gene Expression Omnibus datasets. A total of 371 immune-related genes in DLBCL patients associated with different IPI risk groups were identified by weighted gene co-expression network analysis, and eight genes were selected to construct an IPI-based immune prognostic model (IPI-IPM). Subsequently, we analyzed the somatic mutation and transcription profiles of the IPI-IPM subgroups as well as the potential clinical response to immune checkpoint blockade (ICB) in IPI-IPM subgroups.ResultsThe IPI-IPM was constructed based on the expression of CMBL, TLCD3B, SYNDIG1, ESM1, EPHA3, HUNK, PTX3, and IL12A, where high-risk patients had worse overall survival than low-risk patients, consistent with the results in the independent validation cohorts. The comprehensive results showed that high IPI-IPM risk scores were correlated with immune-related signaling pathways, high KMT2D and CD79B mutation rates, and upregulation of inhibitory immune checkpoints, including PD-L1, BTLA, and SIGLEC7, indicating a greater potential response to ICB therapy.ConclusionThe IPI-IPM has independent prognostic significance for DLBCL patients, which provides an immunological perspective to elucidate the mechanisms of tumor progression and sheds light on the development of immunotherapy for DLBCL.