Project description:FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family.
Project description:Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction-independent FSHD2 are unclear. Here, we show that mutations in SMCHD1 (encoding structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing SMCHD1 levels in skeletal muscle results in D4Z4 contraction-independent DUX4 expression. Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic regulation.
Project description:Facioscapulohumeral muscular dystrophy (FSHD) is most often associated with variegated expression in somatic cells of the normally repressed DUX4 gene within the D4Z4-repeat array. The most common form, FSHD1, is caused by a D4Z4-repeat array contraction to a size of 1-10 units (normal range 10-100 units). The less common form, FSHD2, is characterized by D4Z4 CpG hypomethylation and is most often caused by loss-of-function mutations in the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene on chromosome 18p. The chromatin modifier SMCHD1 is necessary to maintain a repressed D4Z4 chromatin state. Here, we describe two FSHD2 families with a 1.2-Mb deletion encompassing the SMCHD1 gene. Numerical aberrations of chromosome 18 are relatively common and the majority of 18p deletion syndrome (18p-) cases have, such as these FSHD2 families, only one copy of SMCHD1. Our finding therefore raises the possibility that 18p- cases are at risk of developing FSHD. To address this possibility, we combined genome-wide array analysis data with D4Z4 CpG methylation and repeat array sizes in individuals with 18p- and conclude that approximately 1:8 18p- cases might be at risk of developing FSHD.
Project description:Facioscapulohumeral muscular dystrophy (FSHD) is a common type of adult muscular dystrophy and is divided into types 1 and 2 based on genetic mutation. Clinically, both FSHD types often show asymmetric and progressive muscle weakness affecting initially the face, shoulder, and arms followed by the distal then proximal lower extremities. Approximately 95% of patients, termed FSHD1, have a deletion of a key number of repetitive elements on chromosome 4q35. The remaining 5%, termed FSHD2, have no deletion on chromosome 4q35. Nevertheless, both types share a common downstream mechanism, making it possible for future disease-directed therapies to be effective for both FSHD types.
Project description:ObjectiveFacioscapulohumeral muscular dystrophy (FSHD) is a heterogenetic disorder predominantly characterized by progressive facial and scapular muscle weakness. Patients with FSHD either have a contraction of the D4Z4 repeat on chromosome 4q35 or mutations in D4Z4 chromatin modifiers SMCHD1 and DNMT3B, both causing D4Z4 chromatin relaxation and inappropriate expression of the D4Z4-encoded DUX4 gene in skeletal muscle. In this study, we tested the hypothesis whether LRIF1, a known SMCHD1 protein interactor, is a disease gene for idiopathic FSHD2.MethodsClinical examination of a patient with idiopathic FSHD2 was combined with pathologic muscle biopsy examination and with genetic, epigenetic, and molecular studies.ResultsA homozygous LRIF1 mutation was identified in a patient with a clinical phenotype consistent with FSHD. This mutation resulted in the absence of the long isoform of LRIF1 protein, D4Z4 chromatin relaxation, and DUX4 and DUX4 target gene expression in myonuclei, all molecular and epigenetic hallmarks of FSHD. In concordance, LRIF1 was shown to bind to the D4Z4 repeat, and knockdown of the LRIF1 long isoform in muscle cells results in DUX4 and DUX4 target gene expression.ConclusionLRIF1 is a bona fide disease gene for FSHD2. This study further reinforces the unifying genetic mechanism, which postulates that FSHD is caused by D4Z4 chromatin relaxation, resulting in inappropriate DUX4 expression in skeletal muscle.
Project description:Facioscapulohumeral muscular dystrophy (FSHD) seems to be caused by a complex epigenetic disease mechanism as a result of contraction of the polymorphic macrosatellite repeat D4Z4 on chromosome 4qter. Currently, the exact mechanism causing the FSHD phenotype is still not elucidated. In this review, we discuss the genetic and epigenetic changes observed in patients with FSHD and the possible disease mechanisms that may be associated with FSHD pathogenesis.
Project description:Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common types of muscular dystrophy, affecting roughly one in 8000 individuals. The complex underlying genetics and poor mechanistic understanding has caused a bottleneck in therapeutic development. Until the discovery of DUX4 and its causal role in FSHD, most trials were untargeted with limited results. Emerging approaches can learn from these early trials to increase their chance of success. Here, we explore the evolution of FSHD clinical trials from nonspecific anabolic or anti-inflammatory/oxidant strategies to cutting-edge molecular therapies targeting DUX4, and we discuss the importance of clinical outcome measures. With combined advances across multiple facets of FSHD research, the field is now poised to accelerate the process of therapeutic discovery and testing.
Project description:ObjectiveAn observational cross-sectional study was conducted in a national facioscapulohumeral muscular dystrophy (FSHD) expertise center to estimate the penetrance of FSHD1 and to evaluate phenotype-genotype correlations.MethodsTen FSHD1 probands carrying 4-9 D4Z4 unit alleles and 140 relatives were examined. All 150 participants were genetically characterized, including D4Z4 methylation levels in the mutation carriers. Mutation carriers were classified as (1) symptomatic: with symptoms of muscle weakness on history and muscle FSHD signs on examination; (2) asymptomatic: without symptoms of muscle weakness but with muscle FSHD signs on examination; and (3) nonpenetrant: without symptoms of muscle weakness on history and without muscle FSHD signs on examination. We assessed the relationship between age-corrected clinical severity score and repeat size, sex, and D4Z4 methylation levels.ResultsThe maximum likelihood estimates of symptomatic and those of symptomatic plus asymptomatic FSHD showed that penetrance depends on repeat size and increases until late adulthood. We observed many asymptomatic carriers with subtle facial weakness with or without mild shoulder girdle weakness (25% [17/69]). Nonpenetrance was observed less frequently than in recent population studies (17% [12/69]), and most asymptomatic patients reported some shoulder pain. D4Z4 methylation tended to be lower in moderately to severely affected mutation carriers with 7 or 9 repeats.DiscussionThis family-based study detected a lower overall nonpenetrance than previously observed, probably due to many asymptomatic mutation carriers identified by careful examination of facial and shoulder muscles. The recognition of asymptomatic mutation carriers is essential for selection of participants for future trials, and the likelihood estimates are helpful in counseling.
Project description:INTRODUCTION:We developed an evaluator-administered functional facioscapulohumeral muscular dystrophy composite outcome measure (FSHD-COM) comprising patient-identified areas of functional burden for future clinical trials. METHODS:We performed a prospective observational study of 41 patients with FSHD at 2 sites. The FSHD-COM includes functional assessment of the legs, shoulders and arms, trunk, hands, and balance/mobility. We determined the test-retest reliability and convergent validity compared to established FSHD disease metrics. RESULTS:The FSHD-COM demonstrated excellent test-retest reliability (intraclass correlation coefficient [ICC] 0.96; subscale ICC range, 0.90-0.94). Cross-sectional associations between the FSHD-COM and disease duration, clinical severity, and strength were moderate to strong (Pearson correlation coefficient range |0.51-0.92|). DISCUSSION:The FSHD-COM is a disease-relevant, functional composite outcome measure suitable for future FSHD clinical trials that shows excellent test-retest reliability and cross-sectional associations to disease measures. Future directions include determining multisite reliability, sensitivity to change, and the minimal clinically important change in the FSHD-COM. Muscle Nerve, 2018.
Project description:ObjectiveIn some 5% of patients with facioscapulohumeral muscular dystrophy (FSHD), no D4Z4 repeat contraction on chromosome 4q35 is observed. Such patients, termed patients with FSHD2, show loss of DNA methylation and heterochromatin markers at the D4Z4 repeat that are similar to patients with D4Z4 contractions (FSHD1). This commonality suggests that a change in D4Z4 chromatin structure unifies FSHD1 and FSHD2. The aim of our study was to critically evaluate the clinical features in patients with FSHD2 in order to establish whether these patients are phenotypically identical to FSHD1 and to establish the effects of the (epi-) genotype on the phenotype.MethodsThis cross-sectional study studied 33 patients with FSHD2 from 27 families, the largest cohort described to date. All patients were clinically assessed using a standardized clinical evaluation form. Genotype analysis was performed by pulsed field gel electrophoresis and PCR; D4Z4 methylation was studied by methylation-sensitive Southern blot analysis.ResultsFSHD2 is identical to FSHD1 in its clinical presentation. Notable differences include a higher incidence (67%) of sporadic cases and the absence of gender differences in disease severity in FSHD2. Overall, average disease severity in FSHD2 was similar to that reported in FSHD1 and was not influenced by D4Z4 repeat size. In FSHD2, a small effect of the degree of hypomethylation on disease severity was observed.ConclusionsClinically, patients with FSHD2 are indistinguishable from patients with FSHD1. The present data suggest that FSHD1 and FSHD2 are the result of the same pathophysiologic process.