Project description:SARS-CoV-2 breakthrough infections in vaccinated individuals and in those who had a prior infection have been observed globally, but the transmission potential of these infections is unknown. The RT-qPCR cycle threshold (Ct) value is inversely correlated with viral load and culturable virus. Here, we investigate differences in RT-qPCR Ct values across Qatar's national cohorts of primary infections, reinfections, BNT162b2 (Pfizer-BioNTech) breakthrough infections, and mRNA-1273 (Moderna) breakthrough infections. Our matched-cohort analyses of the randomly diagnosed infections show higher mean Ct value in all cohorts of breakthrough infections compared to the cohort of primary infections in unvaccinated individuals. The Ct value is 1.3 (95% CI: 0.9-1.8) cycles higher for BNT162b2 breakthrough infections, 3.2 (95% CI: 1.9-4.5) cycles higher for mRNA-1273 breakthrough infections, and 4.0 (95% CI: 3.5-4.5) cycles higher for reinfections in unvaccinated individuals. Since Ct value correlates inversely with SARS-CoV-2 infectiousness, these differences imply that vaccine breakthrough infections and reinfections are less infectious than primary infections in unvaccinated individuals. Public health benefits of vaccination may have been underestimated, as COVID-19 vaccines not only protect against acquisition of infection, but also appear to protect against transmission of infection.
Project description:BackgroundSARS-CoV-2 infection does not confer long immunity. However, studies suggest that prior infection is associated with lower risk of reinfection and milder outcomes of recurrent infections. The aims of this retrospective observational case-control study were to describe the clinical and molecular characteristics of genetically confirmed Delta reinfection cases and to assess the potential protective role of preceding infection on the severity of reinfection.MethodsWe used next generation sequencing (NGS) to explore if cases with two positive real time RT-PCR tests > 90 days apart were infected with a different SARS-CoV-2 variant. Cases with confirmed reinfection between August 1st and October 31st, 2021 (the Delta wave) in Slovenia were matched 1:4 by age, sex and timeframe (week of positive test) with individuals with primary infection. Sociodemographic and epidemiologic data, vaccination status, and data on hospitalization and outcome of infection were retrieved from several centralized and standardized national databases. Additional epidemiologic surveys were performed on a limited number of cases and controls.ResultsWe identified 628 cases of genetically confirmed reinfection during the study period and matched them with 2,512 control subjects with Delta primary infection. Primary infections in individuals with reinfection were mainly caused by B.1.258.17 (51.1%), followed by B.1.1.7 (15.1%) and reinfection was detected on average 271 days after primary infection (range 101-477 days). Our results show a substantially lower probability of hospitalization in cases with reinfection compared with controls (OR: 0.21, p = 0.017), but no significant difference was observed in intensive care unit admission and deaths. We observed a significantly lower proportion of vaccinated individuals among cases compared to controls (4.5% vs. 28.2%), suggesting that hybrid immunity leads to lower probability of reinfection. Detailed analysis of the temporal distribution of variants, responsible for reinfections, showed no significant differences in reinfection potential.ConclusionReinfection with the SARS-CoV-2 Delta variant resulted in fewer hospitalizations compared to the primary Delta infection, suggesting that primary infection may, to some extent, produce at least short lasting protective immunity. This study provides additional insight into the reinfection dynamics that may allow appropriate public health measures to be taken in subsequent waves of the COVID-19 pandemic.
Project description:BackgroundAn immune correlate of protection from SARS-CoV-2 infection is urgently needed.MethodsWe used an ongoing household cohort with an embedded transmission study that closely monitors participants regardless of symptom status. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and Enzyme-linked immunosorbent assays (ELISAs) were used to measure infections and seropositivity. Sequencing was performed to determine circulating strains of SARS-CoV-2. We investigated the protection associated with seropositivity resulting from prior infection, the anti-spike antibody titers needed for protection, and we compared the severity of first and second infections.ResultsIn March 2021, 62.3% of the cohort was seropositive. After March 2021, gamma and delta variants predominated. Seropositivity was associated with 69.2% protection from any infection (95% CI: 60.7%-75.9%), with higher protection against moderate or severe infection (79.4%, 95% CI: 64.9%-87.9%). Anti-spike titers of 327 and 2,551 were associated with 50% and 80% protection from any infection; titers of 284 and 656 were sufficient for protection against moderate or severe disease. Second infections were less severe than first infections (Relative Risk (RR) of moderated or severe disease: 0.6, 95% CI: 0.38-0.98; RR of subclinical disease:1.9, 95% CI: 1.33-2.73).ConclusionsPrior infection-induced immunity is protective against infection when predominantly gamma and delta SARS-CoV-2 circulated. The protective antibody titers presented may be useful for vaccine policy and control measures. While second infections were somewhat less severe, they were not as mild as ideal. A strategy involving vaccination will be needed to ease the burden of the SARS-CoV-2 pandemic.
Project description:SARS-CoV-2 breakthrough infections in vaccinated individuals and reinfections among previously infected individuals have become increasingly common. Such infections highlight a broader need to understand the contribution of vaccination, including booster doses, and natural immunity to the infectiousness of persons with SARS-CoV-2 infections, especially in high-risk populations with intense transmission such as prisons. Here, we show that both vaccine-derived and naturally acquired immunity independently reduce the infectiousness of persons with Omicron variant SARS-CoV-2 infections in a prison setting. Analyzing SARS-CoV-2 surveillance data from December 2021 to May 2022 across 35 California state prisons with a predominately male population, we estimate that unvaccinated Omicron cases had a 36% (95% confidence interval (CI): 31-42%) risk of transmitting infection to close contacts, as compared to 28% (25-31%) risk among vaccinated cases. In adjusted analyses, we estimated that any vaccination, prior infection alone, and both vaccination and prior infection reduced an index case's risk of transmitting infection by 22% (6-36%), 23% (3-39%) and 40% (20-55%), respectively. Receipt of booster doses and more recent vaccination further reduced infectiousness among vaccinated cases. These findings suggest that although vaccinated and/or previously infected individuals remain highly infectious upon SARS-CoV-2 infection in this prison setting, their infectiousness is reduced compared to individuals without any history of vaccination or infection, underscoring some benefit of vaccination to reduce but not eliminate transmission.
Project description:Objectives: There is little data on SARS-CoV-2 in people with rare chronic diseases. We studied incidence and severity of SARS-CoV-2 and its risk factors in people with primary ciliary dyskinesia (PCD) from May 2020 to May 2022. Methods: We used self-reported questionnaire data from the COVID-PCD study at baseline or during weekly follow-ups. We studied factors associated with SARS-CoV-2 and symptoms using Poisson regression. Results: By May 2022, 728 people participated (40% male, median age 27 years; range 0-85). 87 (12%) reported SARS-CoV-2 at baseline or during follow-up and 62 people reported an incident SARS-CoV-2 infection during 716 person-years (incidence rate 9 per 100 person years). The strongest predictors for reporting SARS-CoV-2 were exposure during periods where Delta variant was dominant (IRR 4.52, 95% CI 1.92-10.6) and Omicron variants (IRR 13.3, 95% CI 5.2-33.8). Severity was mild; 12 (14%) were asymptomatic and 75 (86%) had symptoms among whom four were hospitalized. None needed intensive care and nobody died. Conclusion: The COVID-PCD study participants did not have a higher incidence of SARS-CoV-2 infections nor higher risk of severe COVID-19 disease than people from the general population.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection has brought new challenges to the global prevention and control of coronavirus disease 2019 (COVID-19) pandemic; however, current studies suggest that there is still great uncertainty about the risk of severe COVID-19 and poor outcomes after SARS-CoV-2 reinfection. Random-effects inverse-variance models were used to evaluate the pooled prevalence (PP) and its 95% confidence interval (CI) of severity, outcomes and symptoms of reinfection. Random-effects were used to estimate the pooled odds ratios (OR) and its 95%CI of severity and outcomes between reinfections and primary infections. Nineteen studies involving a total of 34,375 cases of SARS-CoV-2 reinfection and 5,264,720 cases of SARS-CoV-2 primary infection were included in this meta-analysis. Among those SARS-CoV-2 reinfection cases, 41.77% (95%CI, 19.23-64.31%) were asymptomatic, and 51.83% (95%CI, 23.90-79.76%) were symptomatic, only 0.58% (95%CI, 0.031-1.14%) manifested as severe illness, and 0.04% (95%CI, 0.009-0.078%) manifested as critical illness. The PPs for SARS-CoV-2 reinfection-related hospitalization, admission to ICU, and death were, respectively, 15.48% (95%CI, 11.98-18.97%), 3.58% (95%CI, 0.39-6.77%), 2.96% (95%CI, 1.25-4.67%). Compared with SARS-CoV-2 primary infection cases, reinfection cases were more likely to present with mild illness (OR = 7.01, 95%CI, 5.83-8.44), and the risk of severe illness was reduced by 86% (OR = 0.14, 95%CI, 0.11-0.16). Primary infection provided some protection against reinfection and reduces the risk of symptomatic infection and severe illness. Reinfection did not contribute to extra risk of hospitalization, ICU, or death. It is suggested to scientifically understand the risk of reinfection of SARS-CoV-2, strengthen public health education, maintain healthy habits, and reduce the risk of reinfection.
Project description:BackgroundData on the rate and severity of SARS-CoV-2 reinfections in real-world settings are scarce and the effects of vaccine boosters on reinfection risk are unknown.MethodsIn a population-level observational study, registered SARS-CoV-2 laboratory-confirmed Vojvodina residents, between March 6, 2020 and October 31, 2021, were followed for reinfection ≥90 days after primary infection. Data were censored at the end of follow-up (January 31, 2022) or death. The reinfection risk was visualized with Kaplan-Meier plots. To examine the protective effect of vaccination, the subset of individuals with primary infection in 2020 (March 6-December 31) were matched (1:2) with controls without reinfection.FindingsUntil January 31, 2022, 13,792 reinfections were recorded among 251,104 COVID-19 primary infections (5.49%). Most reinfections (86.77%, 11,967/13,792) were recorded in January 2022. Reinfections were mostly mild (99.17%, 13,678/13,792). Hospitalizations were uncommon [1.08% (149/13,792) vs. 3.66% (505/13,792) in primary infection] and COVID-19 deaths were very rare (20/13,792, case fatality rate 0.15%). The overall incidence rate of reinfections was 5.99 (95% CI 5.89-6.09) per 1000 person-months. The reinfection risk was estimated as 0.76% at six months, 1.36% at nine months, 4.96% at 12 months, 16.68% at 15 months, and 18.86% at 18 months. Unvaccinated (OR=1.23; 95%CI=1.14-1.33), incompletely (OR=1.33; 95%CI=1.08-1.64) or completely vaccinated (OR=1.50; 95%CI=1.37-1.63), were modestly more likely to be reinfected compared with recipients of a third (booster) vaccine dose.InterpretationSARS-CoV-2 reinfections were uncommon until the end of 2021 but became common with the advent of Omicron. Very few reinfections were severe. Boosters may modestly reduce reinfection risk.FundingNo specific funding was obtained for this study.
Project description:Large-scale SARS-CoV-2 molecular testing coupled with whole genome sequencing in the diagnostic laboratories is instrumental for real-time genomic surveillance. The extensive genomic, laboratory, and clinical data provide a valuable resource for understanding cases of reinfection versus prolonged RNA shedding and protracted infections. In this study, data from a total of 22,292 clinical specimens, positive by SARS-CoV-2 molecular diagnosis at Johns Hopkins clinical virology laboratory between March 11th 2020 to September 23rd 2021, were used to identify patients with two or more positive results. A total of 3,650 samples collected from 1,529 patients who had between 2 and 20 positive results were identified in a time frame that extended up to 403 days from the first positive. Cycle threshold values (Ct) were available for 1,622 samples, the median of which was over 30 by 11 days after the first positive. Extended recovery of infectious virus on cell culture was notable for up to 70 days after the first positive in immunocompromised patients. Whole genome sequencing data generated as a part of our SARS-CoV-2 genomic surveillance was available for 1,027 samples from patients that had multiple positive tests. Positive samples collected more than 10 days after initial positive with high quality sequences (coverage >90% and mean depth >100), were more likely to be from unvaccinated, or immunosuppressed patients. Reinfections with viral variants of concern were found in 3 patients more than 130 days from prior infections with a different viral clade. In 75 patients that had 2 or more high quality sequences, the acquisition of more substitutions or deletions was associated with lack of vaccination and longer time between the recovered viruses. Our study highlights the value of integrating genomic, laboratory, and clinical data for understanding the biology of SARS-CoV-2 as well as for setting a precedent for future epidemics and pandemics.
Project description:SARS-CoV-2 reinfection is defined as a new infection with a different virus variant in an individual who has already recovered from a previous episode of COVID-19. The first case of reinfection in the world was described in August 2020, since then, reinfections have increased over time and their incidence has fluctuated with specific SARS-CoV-2 variant waves. Initially, reinfections were estimated to represent less than 1% of total COVID-19 infections. With the advent of the Omicron variant, reinfections became more frequent, representing up to 10% of cases (based on data from developed countries). The frequency of reinfections in Latin America has been scarcely reported. The current study shows that in Ecuador, the frequency of reinfections has increased 10-fold following the introduction of Omicron, after 22 months of surveillance in a single center of COVID-19 diagnostics. Suspected reinfections were identified retrospectively from a database of RT-qPCR-positive patients. Cases were confirmed by sequencing viral genomes from the first and second infections using the ONT MinION platform. Monthly surveillance showed that the main incidence peaks of reinfections were reached within four to five months, coinciding with the increase of COVID-19 cases in the country, suggesting that the emergence of reinfections is related to higher exposure to the virus during outbreaks. This study performed the longest monitoring of SARS-CoV-2 reinfections, showing an occurrence at regular intervals of 4-5 months and confirming a greater propensity of Omicron to cause reinfections.
Project description:Current data suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfections are rare, but no information are available on minors and after 12 months of follow-up. This retrospective cohort study included all the population of an Italian Province, diagnosed with a SARS-CoV-2 infection from March 2020 to May 2021. The primary outcome was the incidence of a reinfection, defined as a new positive polymerase chain reaction (PCR) test occurring ≥90 days after complete resolution of the first infection, and data were retrieved from the official datasets (coronavirus disease 2019 [COVID-19], demographic, hospital and co-pay exemption) of the Local Health Unit (LHU) of Pescara. After an average of 201 days of follow-up (max. 414), we recorded 24 reinfections ≥90 days after the resolution of the first 7173 infections (0.33%). Four reinfections required hospitalization, one was lethal. Most of the reinfections (n = 13) occurred 6-9 months after the resolution of the first infection; no new infection was detected 12 or more months later and among the 832 minors. This study confirms previous findings on a low risk of SARS-CoV-2 reinfection. If confirmed, these findings suggest that more targeted restriction policies can be applied to the subjects that recovered after a first infection.