Genetic Diversity and Population Structure of the Xanthomonas campestris pv. campestris Strains Affecting Cabbages in China Revealed by MLST and Rep-PCR Based Genotyping.
Ontology highlight
ABSTRACT: Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.
SUBMITTER: Chen G
PROVIDER: S-EPMC8632610 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA