Project description:The invertebrate glutamate-gated chloride-selective receptors (GluClRs) are ion channels serving as targets for ivermectin (IVM), a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. The native GluClR is a heteropentamer consisting of ? and ? subunit types, with yet unknown subunit stoichiometry and arrangement. Based on the recent crystal structure of a homomeric GluCl?R, we introduced mutations at the intersubunit interfaces where Glu (the neurotransmitter) binds. By electrophysiological characterization of these mutants, we found heteromeric assemblies with two equivalent Glu-binding sites at ?/? intersubunit interfaces, where the GluCl? and GluCl? subunits, respectively, contribute the "principal" and "complementary" components of the putative Glu-binding pockets. We identified a mutation in the IVM-binding site (far away from the Glu-binding sites), which significantly increased the sensitivity of the heteromeric mutant receptor to both Glu and IVM, and improved the receptor subunits' cooperativity. We further characterized this heteromeric GluClR mutant as a receptor having a third Glu-binding site at an ?/? intersubunit interface. Altogether, our data unveil heteromeric GluClR assemblies having three ? and two ? subunits arranged in a counterclockwise ?-?-?-?-? fashion, as viewed from the extracellular side, with either two or three Glu-binding site interfaces.
Project description:An electrophysiology-based forward genetic screen has identified two genes, pickpocket11 (ppk11) and pickpocket16 (ppk16), as being necessary for the homeostatic modulation of presynaptic neurotransmitter release at the Drosophila neuromuscular junction (NMJ). Pickpocket genes encode Degenerin/Epithelial Sodium channel subunits (DEG/ENaC). We demonstrate that ppk11 and ppk16 are necessary in presynaptic motoneurons for both the acute induction and long-term maintenance of synaptic homeostasis. We show that ppk11 and ppk16 are cotranscribed as a single mRNA that is upregulated during homeostatic plasticity. Acute pharmacological inhibition of a PPK11- and PPK16-containing channel abolishes the expression of short- and long-term homeostatic plasticity without altering baseline presynaptic neurotransmitter release, indicating remarkable specificity for homeostatic plasticity rather than NMJ development. Finally, presynaptic calcium imaging experiments support a model in which a PPK11- and PPK16-containing DEG/ENaC channel modulates presynaptic membrane voltage and, thereby, controls calcium channel activity to homeostatically regulate neurotransmitter release.
Project description:Cys-loop ligand-gated ion channels (LGICs) mediate fast ionotropic neurotransmission. They are proven drug targets in nematodes and arthropods, but are poorly characterized in flatworms. In this study, we characterized the anion-selective, non-acetylcholine-gated Cys-loop LGICs from Schistosoma mansoni. Full-length cDNAs were obtained for SmGluCl-1 (Smp_096480), SmGluCl-2 (Smp_015630) and SmGluCl-3 (Smp_104890). A partial cDNA was retrieved for SmGluCl-4 (Smp_099500/Smp_176730). Phylogenetic analyses suggest that SmGluCl-1, SmGluCl-2, SmGluCl-3 and SmGluCl-4 belong to a novel clade of flatworm glutamate-gated chloride channels (GluCl) that includes putative genes from trematodes and cestodes. The flatworm GluCl clade was distinct from the nematode-arthropod and mollusc GluCl clades, and from all GABA receptors. We found no evidence of GABA receptors in S. mansoni. SmGluCl-1, SmGluCl-2 and SmGluCl-3 subunits were characterized by two-electrode voltage clamp (TEVC) in Xenopus oocytes, and shown to encode Cl⁻-permeable channels gated by glutamate. SmGluCl-2 and SmGluCl-3 produced functional homomers, while SmGluCl-1 formed heteromers with SmGluCl-2. Concentration-response relationships revealed that the sensitivity of SmGluCl receptors to L-glutamate is among the highest reported for GluCl receptors, with EC₅₀ values of 7-26 µM. Chloride selectivity was confirmed by current-voltage (I/V) relationships. SmGluCl receptors are insensitive to 1 µM ivermectin (IVM), indicating that they do not belong to the highly IVM-sensitive GluClα subtype group. SmGluCl receptors are also insensitive to 10 µM meclonazepam, a schistosomicidal benzodiazepine. These results provide the first molecular evidence showing the contribution of GluCl receptors to L-glutamate signaling in S. mansoni, an unprecedented finding in parasitic flatworms. Further work is needed to elucidate the roles of GluCl receptors in schistosomes and to explore their potential as drug targets.
Project description:The use of insecticide-treated nets and indoor residual insecticides targeting adult mosquito vectors is a key element in malaria control programs. However, mosquito resistance to the insecticides used in these applications threatens malaria control efforts. Recently, the mass drug administration of ivermectin (IVM) has been shown to kill Anopheles gambiae mosquitoes and disrupt Plasmodium falciparum transmission in the field. We cloned the molecular target of IVM from A. gambiae, the glutamate-gated chloride channel (AgGluCl), and characterized its transcriptional patterns, protein expression and functional responses to glutamate and IVM. AgGluCl cloning revealed an unpredicted fourth splice isoform as well as a novel exon and splice site. The predicted gene products contained heterogeneity in the N-terminal extracellular domain and the intracellular loop region. Responses to glutamate and IVM were measured using two-electrode voltage clamp on Xenopus laevis oocytes expressing AgGluCl. IVM induced non-persistent currents in AgGluCl-a1 and did not potentiate glutamate responses. In contrast, AgGluCl-b was insensitive to IVM, suggesting that the AgGluCl gene could produce IVM-sensitive and -insensitive homomultimers from alternative splicing. AgGluCl isoform-specific transcripts were measured across tissues, ages, blood feeding status and sex, and were found to be differentially transcribed across these physiological variables. Lastly, we stained adult, female A. gambiae for GluCl expression. The channel was expressed in the antenna, Johnston's organ, supraesophageal ganglion and thoracic ganglia. In summary, we have characterized the first GluCl from a mosquito, A. gambiae, and described its unique activity and expression with respect to it as the target of the insecticide IVM.
Project description:Glutamate recognition by neurotransmitter receptors often relies on Arg residues in the binding site, leading to the assumption that charge-charge interactions underlie ligand recognition. However, assessing the precise chemical contribution of Arg side chains to protein function and pharmacology has proven to be exceedingly difficult in such large and complex proteins. Using the in vivo nonsense suppression approach, we report the first successful incorporation of the isosteric, titratable Arg analog, canavanine, into a neurotransmitter receptor in a living cell, utilizing a glutamate-gated chloride channel from the nematode Haemonchus contortus Our data unveil a surprisingly small contribution of charge at a conserved arginine side chain previously suggested to form a salt bridge with the ligand, glutamate. Instead, our data show that Arg contributes crucially to ligand sensitivity via a hydrogen bond network, where Arg interacts both with agonist and with a conserved Thr side chain within the receptor. Together, the data provide a new explanation for the reliance of neurotransmitter receptors on Arg side chains and highlight the exceptional capacity of unnatural amino acid incorporation for increasing our understanding of ligand recognition.
Project description:The glutamate-gated chloride channel (GluCl) is a highly sensitive insecticide target of the avermectin class of insecticides. As an alternative to using chemical insecticides to kill mosquitoes, we tested the effects of purified immunoglobulin G (IgG) targeting the extracellular domain of GluCl from Anopheles gambiae (AgGluCl) on the survivorship of three key mosquito disease vectors: Anopheles gambiae s.s., Aedes aegypti and Culex tarsalis. When administered through a single blood meal, anti-AgGluCl IgG reduced the survivorship of A. gambiae in a dose-dependent manner (LC50: 2.82 mg ml(-1), range 2.68-2.96 mg ml(-1)) but not A. aegypti or C. tarsalis. We previously demonstrated that AgGluCl is only located in tissues of the head and thorax of A. gambiae. To verify that AgGluCl IgG is affecting target antigens found outside the midgut, we injected it directly into the hemocoel via intrathoracic injection. A single, physiologically relevant concentration of anti-AgGluCl IgG injected into the hemocoel equally reduced mosquito survivorship of all three species. To test whether anti-AgGluCl IgG was entering the hemocoel of each of these mosquitoes, we fed mosquitoes a blood meal containing anti-AgGluCl IgG and subsequently extracted their hemolymph. We only detected IgG in the hemolymph of A. gambiae, suggesting that resistance of A. aegypti and C. tarsalis to anti-AgGluCl IgG found in blood meals is due to deficient IgG translocation across the midgut. We predicted that anti-AgGluCl IgG's mode of action is by antagonizing GluCl activity. To test this hypothesis, we fed A. gambiae blood meals containing anti-AgGluCl IgG and the GluCl agonist ivermectin (IVM). Anti-AgGluCl IgG attenuated the mosquitocidal effects of IVM, suggesting that anti-AgGluCl IgG antagonizes IVM-induced activation of GluCl. Lastly, we stained adult, female A. aegypti and C. tarsalis for GluCl expression. Neuronal GluCl expression in these mosquitoes was similar to previously reported A. gambiae GluCl expression; however, we also discovered GluCl staining on the basolateral surface of their midgut epithelial cells, suggesting important physiological differences in Culicine and Anopheline mosquitoes.
Project description:Homeostatic signaling systems are thought to interface with other forms of plasticity to ensure flexible yet stable levels of neurotransmission. The role of neurotransmitter receptors in this process, beyond mediating neurotransmission itself, is not known. Through a forward genetic screen, we have identified the Drosophila kainate-type ionotropic glutamate receptor subunit DKaiR1D to be required for the retrograde, homeostatic potentiation of synaptic strength. DKaiR1D is necessary in presynaptic motor neurons, localized near active zones, and confers robustness to the calcium sensitivity of baseline synaptic transmission. Acute pharmacological blockade of DKaiR1D disrupts homeostatic plasticity, indicating that this receptor is required for the expression of this process, distinct from developmental roles. Finally, we demonstrate that calcium permeability through DKaiR1D is necessary for baseline synaptic transmission, but not for homeostatic signaling. We propose that DKaiR1D is a glutamate autoreceptor that promotes robustness to synaptic strength and plasticity with active zone specificity.
Project description:The homeostatic control of presynaptic neurotransmitter release stabilizes information transfer at synaptic connections in the nervous system of organisms ranging from insect to human. Presynaptic homeostatic signaling centers upon the regulated membrane insertion of an amiloride-sensitive degenerin/epithelial sodium (Deg/ENaC) channel. Elucidating the subunit composition of this channel is an essential step toward defining the underlying mechanisms of presynaptic homeostatic plasticity (PHP). Here, we demonstrate that the ppk1 gene encodes an essential subunit of this Deg/ENaC channel, functioning in motoneurons for the rapid induction and maintenance of PHP. We provide genetic and biochemical evidence that PPK1 functions together with PPK11 and PPK16 as a presynaptic, hetero-trimeric Deg/ENaC channel. Finally, we highlight tight control of Deg/ENaC channel expression and activity, showing increased PPK1 protein expression during PHP and evidence for signaling mechanisms that fine tune the level of Deg/ENaC activity during PHP.
Project description:1. We report the cloning and expression of a novel Caenorhabditis elegans polypeptide, GLC-3, with high sequence identity to previously cloned L-glutamate-gated chloride channel subunits from nematodes and insects. 2. Expression of glc-3 cRNA in XENOPUS oocytes resulted in the formation of homo-oligomeric L-glutamate-gated chloride channels with robust and rapidly desensitizing currents, an EC(50) of 1.9+/-0.03 mM and a Hill coefficient of 1.5+/-0.1. GABA, glycine, histamine and NMDA all failed to activate the GLC-3 homo-oligomer at concentrations of 1 mM. The anthelminthic, ivermectin, directly and irreversibly activated the L-glutamate-gated channel with an EC(50) of 0.4+/-0.02 microM. 3. The GLC-3 channels were selective for chloride ions, as shown by the shift in the reversal potential for L-glutamate-gated currents after the reduction of external Cl(-) from 107.6 to 62.5 mM. 4. Picrotoxinin failed to inhibit L-glutamate agonist responses at concentrations up to 1 mM. The polycyclic dinitrile, 3,3-bis-trifluoromethyl-bicyclo[2,2,1]heptane-2,2-dicarbonitrile (BIDN), completely blocked L-glutamate-induced chloride currents recorded from oocytes expressing GLC-3 with an IC(50) of 0.2+/-0.07 microM. The phenylpyrazole insecticide, fipronil, reversibly inhibited L-glutamate-gated currents recorded from the GLC-3 receptor with an IC(50) of 11.5+/-0.11 microM. 5. In this study, we detail the unusual antagonist pharmacology of a new GluCl subunit from C. elegans. Unlike all other native and recombinant nematode GluCl reported to date, the GLC-3 receptor is insensitive to picrotoxinin, but is sensitive to two other channel blockers, BIDN and fipronil. Further study of this receptor may provide insights into the molecular basis of non-competitive antagonism by these compounds.