Project description:The present review is focused on juvenile neuronal ceroid lipofuscinosis (JNCL; Batten disease) due to a mutation in CLN3. Functional vision impairment occurring around 5-6 years of age is the first symptom in more than 80% of patients. Approximately 2 years later (though sometimes simultaneously), obvious signs of cognitive impairment appear. Behavior problems can occur in advance, especially in boys. These include anxious and depressed mood, aggressive behavior, and hallucinations, and even psychotic symptoms. Following the teens, severe dementia is present, including loss of memory, attention, and general reasoning abilities, as well as loss of independent adaptive skills such as mobility, feeding, and communicating. Sleep abnormalities, such as settling problems, nocturnal awakenings, and nightmares, are reported in more than half of patients. The vast majority, if not all, patients develop seizures, starting at approximately 10 years of age. Generalized tonic-clonic seizure occurs as the only type of seizure in approximately half of patients, and in combination with partial seizures in a third of patients. There seems to be no difference in seizure severity according to sex or genotype, and there is great variation in seizure activity among patients. Soon after diagnosis, patients begin to have slight ataxic symptoms, and at adolescence extrapyramidal symptoms (rigidity, bradykinesia, slow steps with flexion in hips and knees) occur with increasing frequency. Chewing and swallowing difficulties emerge as well, and food intake is hampered in the late teens. Disabling periodically involuntary movements may occur as well. A progressive cardiac involvement with repolarization disturbances, ventricular hypertrophy, and sinus-node dysfunction, ultimately leading to severe bradycardia and/or other conduction abnormalities, starts in the mid-teens. Patients are usually bedridden at 20 years of age, and death usually occurs in the third decade of life.
Project description:Alcoholic liver disease (ALD) due to chronic alcohol consumption is a significant global disease burden and a leading cause of mortality. Alcohol abuse induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of ALD is widely recognized, the precise triggers for disease progression are still to be fully elucidated. Oxidative stress, mitochondrial dysfunction, gut dysbiosis and altered immune system response plays an important role in disease pathogenesis, triggering the activation of inflammatory pathways and apoptosis. Despite many recent clinical studies treatment options for ALD are limited, especially at the alcoholic hepatitis stage. We have therefore reviewed some of the key pathways involved in the pathogenesis of ALD and highlighted current trials for treating patients.
Project description:Monkeypox is caused by an orthopoxvirus, which is a DNA virus. Monkeypox is a zoonotic viral infection that has been endemic in West Africa and Central Africa for over a decade. Between 1 January and 22 June 2022, the World Health Organization (WHO) reported 3,413 laboratory-confirmed cases of monkeypox from 50 countries. Most cases (86%) were reported from Europe, with 2% from Africa and 11% from North and South America. In the US, the Centers for Disease Control and Prevention (CDC) identified an outbreak of monkeypox on May 17, 2022. In 99% of cases, the patients were men, 94% reported male-to-male sexual contact or intimate contact in the three weeks before they experienced symptoms of infection, 46% reported one or more genital lesions, and 41% had HIV infection. This initial data from the US showed widespread community transmission of monkeypox that mainly affected bisexual, gay, other men who had sex with men, and also ethnic and racial minority groups. Therefore, public health efforts in the US aim to prioritize these specific demographic groups for infection prevention and testing. By August 4, 2022, the US Department of Health and Human Services declared the monkeypox outbreak a public health emergency. This Editorial aims to present the current status of non-endemic global infections with the monkeypox virus, and current strategies for its prevention and management.
Project description:Mutations in the LAMA2 gene affect the production of the ?2 subunit of laminin-211 (= merosin) and result in either partial or complete laminin-211 deficiency. Complete merosin deficiency is typically associated with a more severe congenital muscular dystrophy (CMD), clinically manifested by hypotonia and weakness at birth, the development of contractures of large joints, and progressive respiratory involvement. Muscle atrophy and severe weakness typically prevent independent ambulation. Partial merosin deficiency is mostly manifested by later onset limb-girdle weakness and joint contractures so that independent ambulation is typically achieved. Collectively, complete and partial merosin deficiency is referred to as LAMA2-related dystrophies (LAMA2-RDs) and represents one of the most common forms of congenital muscular dystrophies worldwide. LAMA2-RDs are classically characterized by both central and peripheral nervous system involvement with abnormal appearing white matter (WM) on brain MRI and dystrophic appearing muscle on muscle biopsy as well as creatine kinase (CK) levels commonly elevated to >1,000 IU/L. Next-generation sequencing (NGS) has greatly improved diagnostic abilities for LAMA2-RD, and the majority of patients with merosin deficiency carry recessive pathogenic variants in the LAMA2 gene. The existence of multiple animal models for LAMA2-RDs has helped to advance our understanding of laminin-211 and has been instrumental in preclinical research progress and translation to clinical trials. The first clinical trial for the LAMA2-RDs was a phase 1 pharmacokinetic and safety study of the anti-apoptotic compound omigapil, based on preclinical studies performed in the dy W/dy W and dy 2J/dy 2J mouse models. This phase 1 study enabled the collection of pulmonary and motor outcome measures and also provided the opportunity for investigating exploratory outcome measures including muscle ultrasound, muscle MRI and serum, and urine biomarker collection. Natural history studies, including a five-year prospective natural history and comparative outcome measures study in patients with LAMA2-RD, have helped to better delineate the natural history and identify viable outcome measures. Plans for further clinical trials for LAMA2-RDs are presently in progress, highlighting the necessity of identifying adequate, disease-relevant biomarkers, capable of reflecting potential therapeutic changes, in addition to refining the clinical outcome measures and time-to-event trajectory analysis of affected patients.