Unknown

Dataset Information

0

Identification of proteins associated with bast fiber growth of ramie by differential proteomic analysis.


ABSTRACT:

Background

Ramie is an important fiber-producing crop in China, and its fibers are widely used as textile materials. Fibers contain specialized secondary cellular walls that are mainly composed of cellulose, hemicelluloses, and lignin. Understanding the mechanism underlying the secondary wall biosynthesis of fibers will benefit the improvement of fiber yield and quality in ramie.

Results

Here, we performed a proteomic analysis of the bark from the top and middle parts of the stem, where fiber growth is at different stages. We identified 6971 non-redundant proteins from bast bark. Proteomic comparison revealed 983 proteins with differential expression between the two bark types. Of these 983 proteins, 46 were identified as the homolog of known secondary wall biosynthetic proteins of Arabidopsis, indicating that they were potentially associated with fiber growth. Then, we proposed a molecular model for the secondary wall biosynthesis of ramie fiber. Furthermore, interaction analysis of 46 candidate proteins revealed two interacting networks that consisted of eight cellulose biosynthetic enzymes and seven lignin biosynthetic proteins, respectively.

Conclusion

This study sheds light on the proteomic basis underlying bast fiber growth in ramie, and the identification of many candidates associated with fiber growth provides important basis for understanding the fiber growth in this crop.

SUBMITTER: Li F 

PROVIDER: S-EPMC8638140 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8520194 | biostudies-literature
| S-EPMC4326285 | biostudies-literature
| S-EPMC6722885 | biostudies-literature
| S-EPMC6958601 | biostudies-literature
| S-EPMC2731776 | biostudies-literature
2019-05-02 | GSE130587 | GEO
| S-EPMC1855729 | biostudies-literature
| S-EPMC5114303 | biostudies-literature
| S-EPMC2408578 | biostudies-literature
| S-EPMC2663966 | biostudies-literature