Driver behaviour and traffic accident involvement among professional heavy semi-trailer truck drivers in China.
Ontology highlight
ABSTRACT: The purpose of this study was to develop a driving behavior scale for professional drivers of heavy semi-trailer trucks in China, and study the causes of such driving behavior and its impact on traffic safety operation. Data was processed by IBM SPSS 25. In addition to principal component analysis, Promax rotation, Bartlett's test, Cronbach's alpha, correlation analysis and binary logistic regression were examined. A DBQ with 4 dimensions and 20 items, and a PDBQ with 1 dimension and 6 items were developed for professional drivers of heavy semi-trailer trucks in China. The KMO coefficients of PDBQ and DBQ were 0.822 and 0.852, respectively, and the significant level of Bartlett's popularity test was p < 0.0001. The accident prediction model showed that the variables related to traffic accidents were negligence/lapses and driving time of heavy semi-trailer truck drivers. 1-5 a.m. was found to be the most dangerous period for drivers of medium and heavy semi-trailer trucks, during which accidents were most likely to happen. As negligence/lapses increased by one unit, the probability of traffic accidents increased by 2.293 times.
SUBMITTER: Han W
PROVIDER: S-EPMC8638885 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA