Project description:BackgroundA vaccine against SARS-CoV-2 is of high urgency. Here the safety and immunogenicity induced by a DNA vaccine (INO-4800) targeting the full length spike antigen of SARS-CoV-2 are described.MethodsINO-4800 was evaluated in two groups of 20 participants, receiving either 1.0 mg or 2.0 mg of vaccine intradermally followed by CELLECTRA® EP at 0 and 4 weeks. Thirty-nine subjects completed both doses; one subject in the 2.0 mg group discontinued trial participation prior to receiving the second dose. ClinicalTrials.gov identifier: NCT04336410.FindingsThe median age was 34.5, 55% (22/40) were men and 82.5% (33/40) white. Through week 8, only 6 related Grade 1 adverse events in 5 subjects were observed. None of these increased in frequency with the second administration. No serious adverse events were reported. All 38 subjects evaluable for immunogenicity had cellular and/or humoral immune responses following the second dose of INO-4800. By week 6, 95% (36/38) of the participants seroconverted based on their responses by generating binding (ELISA) and/or neutralizing antibodies (PRNT IC50), with responder geometric mean binding antibody titers of 655.5 [95% CI (255.6, 1681.0)] and 994.2 [95% CI (395.3, 2500.3)] in the 1.0 mg and 2.0 mg groups, respectively. For neutralizing antibody, 78% (14/18) and 84% (16/19) generated a response with corresponding geometric mean titers of 102.3 [95% CI (37.4, 280.3)] and 63.5 [95% CI (39.6, 101.8)], in the respective groups. By week 8, 74% (14/19) and 100% (19/19) of subjects generated T cell responses by IFN-ɣ ELISpot assay with the median SFU per 106 PBMC of 46 [95% CI (21.1, 142.2)] and 71 [95% CI (32.2, 194.4)] in the 1.0 mg and 2.0 mg groups, respectively. Flow cytometry demonstrated a T cell response, dominated by CD8+ T cells co-producing IFN-ɣ and TNF-α, without increase in IL-4.InterpretationINO-4800 demonstrated excellent safety and tolerability and was immunogenic in 100% (38/38) of the vaccinated subjects by eliciting either or both humoral or cellular immune responses.FundingCoalition for Epidemic Preparedness Innovations (CEPI).
Project description:Global surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with broadened host specificity, pathogenicity, and immune evasion to vaccine-induced immunity. Here we compared humoral and cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested.
Project description:Inactivated coronavirus disease 2019 (COVID-19) vaccines showed impaired immunogenicity in some autoimmune diseases, but it remains unclear in primary biliary cholangitis (PBC). This study aimed to explore the antibody response to the inactivated COVID-19 vaccine in individuals with PBC, as well as to evaluate coverage, safety, and attitudes toward the COVID-19 vaccine among them. Two cohorts of patients with PBC were enrolled in this study. One cohort was arranged to evaluate the immunogenicity of the inactivated COVID-19 vaccine, another cohort participated in an online survey. The titers of the anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG), neutralizing antibody (NAb) toward severe acute respiratory syndrome coronavirus 2 wild-type, and NAb toward Omicron BA.4/5 subvariants were detected to assess antibody response from the vaccine. After booster vaccination for more than six months, patients with PBC had significantly lowered levels of anti-RBD-specific IgG compared to HCs, and the inhibition rates of NAb toward wild-type also declined in individuals with PBC. The detected levels of NAb toward Omicron BA.4/5 were below the positive threshold in patients with PBC and HCs. Laboratory parameters did not significantly correlate with any of the three antibodies. The online survey revealed that 24% of patients with PBC received three COVID-19 vaccines, while 63% were unimmunized. Adverse effect rates after the first, second, and third vaccine doses were 6.1%, 10.3%, and 9.5%, respectively. Unvaccinated patients with PBC were more worried about the safety of the vaccine than those who were vaccinated (P = 0.004). As a result, this study fills the immunological assessment gap in patients with PBC who received inactivated COVID-19 vaccines.
Project description:Human telomerase reverse transcriptase (hTERT) is frequently classified as a 'universal' tumor associated antigen due to its expression in a vast number of cancers. We evaluated plasmid DNA-encoded hTERT as an immunotherapy across nine cancer types. A phase 1 clinical trial was conducted in adult patients with no evidence of disease following definitive surgery and standard therapy, who were at high risk of relapse. Plasmid DNA encoding one of two hTERT variants (INO-1400 or INO-1401) with or without plasmid DNA encoding interleukin 12 (IL-12) (INO-9012) was delivered intramuscularly concurrent with the application of the CELLECTRA constant-current electroporation device 4 times across 12 weeks. Safety assessments and immune monitoring against native (germline, non-mutated, non-plasmid matched) hTERT antigen were performed. The largest cohort of patients enrolled had pancreatic cancer, allowing for additional targeted assessments for this tumor type. Of the 93 enrolled patients who received at least one dose, 88 had at least one adverse event; the majority were grade 1 or 2, related to injection site. At 18 months, 54.8% (51/93) patients were disease-free, with median disease-free survival (DFS) not reached by end of study. For patients with pancreatic cancer, the median DFS was 9 months, with 41.4% of these patients remaining disease-free at 18 months. hTERT immunotherapy induced a de novo cellular immune response or enhanced pre-existing cellular responses to native hTERT in 96% (88/92) of patients with various cancer types. Treatment with INO-1400/INO-1401±INO-9012 drove hTERT-specific IFN-γ production, generated hTERT-specific CD4+ and CD8+ T cells expressing the activation marker CD38, and induced hTERT-specific activated CD8 +CTLs as defined by cells expressing perforin and granzymes. The addition of plasmid IL-12 adjuvant elicited higher magnitudes of cellular responses including IFN-γ production, activated CD4+ and CD8+ T cells, and activated CD8+CTLs. In a subset analysis of pancreatic cancer patients, the presence of immunotherapy-induced activated CD8+ T cells expressing PD-1, granzymes and perforin correlated with survival. Plasmid DNA-encoded hTERT/IL-12 DNA immunotherapy was well-tolerated, immune responses were noted across all tumor types, and a specific CD8+ phenotype increased by the immunotherapy was significantly correlated with survival in patients with pancreatic cancer.
Project description:Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 × 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.
Project description:The tetravalent dengue vaccine (CYD-TDV; Dengvaxia®) is administered on a three-dose schedule, 6 months apart in those aged ≥9 years in a number of dengue-endemic countries in Asia and Latin America. In this study, CYD63 (NCT02824198), participants aged 9-45 years at first vaccination, and who had received three doses of CYD-TDV in the CYD28 study more than 5 years previously, were randomized 3:1 to receive a booster CYD-TDV dose (Group 1) or placebo (Group 2). Dengue neutralizing antibody geometric mean titres (PRNT50 GMTs) for each of the four dengue serotypes were assessed in sera collected before and 28 days after booster injections. Non-inferiority of the booster immune response versus that induced after the third dose was demonstrated for each serotype if the lower limit of the two-sided 95% confidence interval (CI) was >0.5 for the GMT ratios (GMTRs) between post-booster CYD-TDV dose and post-dose 3 in Group 1. Overall, 118 participants received CYD-TDV booster or placebo and 116 (98.3%) completed the study; two participants were withdrawn because of noncompliance. GMTs in the booster CYD-TDV group increased across all serotypes post-booster injection by 1.74- (serotype 1) to 3.58-fold (serotype 4). No discernible increases were observed in the placebo group. Non-inferiority was demonstrated for serotypes 1, 3, and 4, but not for serotype 2 (GMTR; 0.603 [95% CI, 0.439- 0.829]). No safety issues were observed. These data show that the CYD-TDV booster given 5 or more years later tended to restore GMTs back to levels observed post-dose 3.