Ontology highlight
ABSTRACT: Introduction
While protective headwear products (PHP) are designed to protect older adults from fall-related head injuries, there are limited data on their protective capacity. This study's goal was to assess the impact attenuation provided by commercially available PHP during simulated head impacts.Methods
A drop tower and Hybrid III headform measured the decrease in peak linear acceleration (g atten ) provided by 12 PHP for front- and back-of-head impacts at low (clinically relevant: 3.5 m/s) and high (5.7 m/s) impact velocities.Results
The range of g atten across PHP was larger at the low velocity (56% and 41% for back and frontal impacts, respectively) vs. high velocity condition (27% and 38% for back and frontal impacts, respectively). A significant interaction between impact location and velocity was observed (p < .05), with significantly greater g atten for back-of-head compared to front-of-head impacts at the low impact velocity (19% mean difference). While not significant, there was a modest positive association between g atten and product padding thickness for back-of-head impacts (p = .095; r = 0.349).Conclusion
This study demonstrates the wide range in impact attenuation across commercially available PHP, and suggests that existing products provide greater impact attenuation during back-of-head impacts. These data may inform evidence-based decisions for clinicians and consumers and help drive industry innovation.
SUBMITTER: Martel DR
PROVIDER: S-EPMC8645304 | biostudies-literature |
REPOSITORIES: biostudies-literature