Project description:Electromagnetic fields (EMF) in the intermediate frequency (IF) range are generated by many novel electrical appliances, including electric vehicles, radiofrequency identification systems, induction hobs, or energy supply systems, such as wireless charging systems. The aim of this systematic review is to evaluate whether cardiovascular implantable electronic devices (CIEDs) are susceptible to electromagnetic interference (EMI) in the IF range (1 kHz-1 MHz). Additionally, we discuss the advantages and disadvantages of the different types of studies used to investigate EMI. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement, we collected and evaluated studies examining EMI in in vivo studies, in vitro studies (phantom studies, benchmark tests), and simulation studies. Our analysis revealed that cardiac implants are susceptible to malfunction induced by EMF in the IF range. Electromagnetic interference may in particular be provoked by security systems and induction hobs. The results of the studies evaluated in this systematic review further indicate that the likelihood for EMI is dependent on exposure-related parameters (field strength, frequency, and modulation) and on implant- as well as on lead-related parameters (model, type of implant, implant sensitivity setting, lead configuration, and implantation site). The review shows that the factors influencing EMI are not sufficiently characterized and EMF limit values for CIED patients cannot be derived yet. Future studies should therefore, consider exposure-related parameters as well as implant- and lead-related parameters systematically. Additionally, worst-case scenarios should be considered in all study types where possible.
Project description:Cardiac myosin binding protein-C (cMyBP-C) is an important regulator of sarcomeric function. Reduced phosphorylation of cMyBP-C has been linked to compromised contractility in heart failure patients. Here, we used previously published cMyBP-C peptides 302A and 302S, surrogates of the regulatory phosphorylation site serine 302, as a tool to determine the effects of modulating the dephosphorylation state of cMyBP-C on cardiac contraction and relaxation in experimental heart failure (HF) models in vitro. Both peptides increased the contractility of papillary muscle fibers isolated from a mouse model expressing cMyBP-C phospho-ablation (cMyBP-CAAA) constitutively. Peptide 302A, in particular, could also improve the force redevelopment rate (ktr) in papillary muscle fibers from cMyBP-CAAA (nonphosphorylated alanines) mice. Consistent with the above findings, both peptides increased ATPase rates in myofibrils isolated from rats with myocardial infarction (MI), but not from sham rats. Furthermore, in the cMyBP-CAAA mouse model, both peptides improved ATPase hydrolysis rates. These changes were not observed in non-transgenic (NTG) mice or sham rats, indicating the specific effects of these peptides in regulating the dephosphorylation state of cMyBP-C under the pathological conditions of HF. Taken together, these studies demonstrate that modulation of cMyBP-C dephosphorylation state can be a therapeutic approach to improve myosin function, sarcomere contractility and relaxation after an adverse cardiac event. Therefore, targeting cMyBP-C could potentially improve overall cardiac performance as a complement to standard-care drugs in HF patients.
Project description:(1) Background: Heart failure (HF) is a major cause of morbidity and mortality throughout the world. Despite substantial progress in its prevention and treatment, mortality rates remain high. Device therapy for HF mainly includes cardiac resynchronization therapy (CRT) and the use of an implantable cardioverter-defibrillator (ICD). Recently, however, a new device therapy-cardiac contractility modulation (CCM)-became available. (2) Aim: The purpose of this study is to present a first case-series of patients with different clinical patterns of HF with a reduced ejection fraction (HFrEF), supported with the newest generation of CCM devices. (3) Methods and results: Five patients with a left ventricular ejection fraction (LVEF) ? 35% and a New York Heart Association (NYHA) class ? III were supported with CCM OPTIMIZER® SMART IPGCCMX10 at our clinic. The patients had a median age of 67 ± 8.03 years (47-80) and were all males-four with ischemic etiology dilated cardiomyopathy. In two cases, CCM was added on top of CRT (non-responders), and, in one patient, CCM was delivered during persistent atrial fibrillation (AF). After 6 months of follow-up, the LVEF increased from 25.4 ± 6.8% to 27 ± 9%, and the six-minute walk distance increased from 310 ± 65.1 m to 466 ± 23.6 m. One patient died 47 days after device implantation. (4) Conclusion: CCM therapy provided with the new model OPTIMIZER® SMART IPG CCMX10 is safe, feasible, and applicable to a wide range of patients with HF.
Project description:Two of the most prominent organ systems, the nervous and the cardiovascular systems, are intricately connected to maintain homeostasis in mammals. Recent years have shown tremendous efforts toward therapeutic modulation of cardiac contractility and electrophysiology by electrical stimulation. Neuronal innervation and cardiac ganglia regulation are often overlooked when developing in vitro models for cardiac devices, but it is likely that peripheral nervous system plays a role in the clinical effects. We developed an in vitro neurocardiac coculture (ivNCC) model system to study cardiac and neuronal interplay using human induced pluripotent stem cell (hiPSC) technology. We demonstrated significant expression and colocalization of cardiac markers including troponin, α-actinin, and neuronal marker peripherin in neurocardiac coculture. To assess functional coupling between the cardiomyocytes and neurons, we evaluated nicotine-induced β-adrenergic norepinephrine effect and found beat rate was significantly increased in ivNCC as compared to monoculture alone. The developed platform was used as a nonclinical model for the assessment of cardiac medical devices that deliver nonexcitatory electrical pulses to the heart during the absolute refractory period of the cardiac cycle, that is, cardiac contractility modulation (CCM) therapy. Robust coculture response was observed at 14 V/cm (5 V, 64 mA), monophasic, 2 ms pulse duration for pacing and 20 V/cm (7 V, 90 mA) phase amplitude, biphasic, 5.14 ms pulse duration for CCM. We observed that the CCM effect and kinetics were more pronounced in coculture as compared to cardiac monoculture, supporting a hypothesis that some part of CCM mechanism of action can be attributed to peripheral nervous system stimulation. This study provides novel characterization of CCM effects on hiPSC-derived neurocardiac cocultures. This innervated human heart model can be further extended to investigate arrhythmic mechanisms, neurocardiac safety, and toxicity post-chronic exposure to materials, drugs, and medical devices. We present data on acute CCM electrical stimulation effects on a functional and optimized coculture using commercially available hiPSC-derived cardiomyocytes and neurons. Moreover, this study provides an in vitro human heart model to evaluate neuronal innervation and cardiac ganglia regulation of contractility by applying CCM pulse parameters that closely resemble clinical setting. This ivNCC platform provides a potential tool for investigating aspects of cardiac and neurological device safety and performance.
Project description:Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI.
Project description:AimsIncreasing attention is being given to patients with heart failure and 'mid-range' left ventricular ejection fraction (LVEF, ≥40% and <50%) for whom there are no approved therapies that improve prognosis. We aim to assess for the first time the effects of cardiac contractility modulation (CCM) therapy in this patient population.Methods and resultsWe assessed the effects of 6- month CCM therapy on functional status, exercise tolerance and quality of life in a subgroup of 53 patients with a LVEF of 40-45% recruited in previous CCM studies, including 37 patients in the CCM group and 16 in the control group. New York Heart Association classification improved by ≥1 class from baseline to 24 weeks in 80.6% (95% confidence interval [62.5%, 92.5%]) of patients in the CCM group compared with 57.1% in the control group (95% confidence interval [28.9%, 82.3%], P = 0.15). Six-minute walk distance increased significantly in the CCM group with a net between-group treatment effect of 53.9 ± 74.2 m (P = 0.05). Peak VO2 improved in the CCM group with a net between-group treatment effect of 2.0 ± 2.8 mL/kg/min (P = 0.02). Minnesota Living with Heart Failure Questionnaire score decreased from baseline to 24 weeks with a net between-group treatment effect of -13.1 ± 21.0 (P = 0.10). There were no significant differences in the adverse event rate between the CCM and control groups.ConclusionsThese preliminary results suggest that CCM exerts favourable effects on exercise tolerance and quality of life in patients with LVEF in the range of 40-45% with an acceptable safety profile. Further randomized controlled studies are planned to prove these effects.
Project description:Cardiac contractility modulation (CCM) is an intracardiac therapy whereby nonexcitatory electrical simulations are delivered during the absolute refractory period of the cardiac cycle. We previously evaluated the effects of CCM in isolated adult rabbit ventricular cardiomyocytes and found a transient increase in calcium and contractility. In the present study, we sought to extend these results to human cardiomyocytes using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to develop a robust model to evaluate CCM in vitro. HiPSC-CMs (iCell Cardiomyocytes2 , Fujifilm Cellular Dynamic, Inc.) were studied in monolayer format plated on flexible substrate. Contractility, calcium handling, and electrophysiology were evaluated by fluorescence- and video-based analysis (CellOPTIQ, Clyde Biosciences). CCM pulses were applied using an A-M Systems 4100 pulse generator. Robust hiPSC-CMs response was observed at 14 V/cm (64 mA) for pacing and 28 V/cm (128 mA, phase amplitude) for CCM. Under these conditions, hiPSC-CMs displayed enhanced contractile properties including increased contraction amplitude and faster contraction kinetics. Likewise, calcium transient amplitude increased, and calcium kinetics were faster. Furthermore, electrophysiological properties were altered resulting in shortened action potential duration (APD). The observed effects subsided when the CCM stimulation was stopped. CCM-induced increase in hiPSC-CMs contractility was significantly more pronounced when extracellular calcium concentration was lowered from 2 mM to 0.5 mM. This study provides a comprehensive characterization of CCM effects on hiPSC-CMs. These data represent the first study of CCM in hiPSC-CMs and provide an in vitro model to assess physiologically relevant mechanisms and evaluate safety and effectiveness of future cardiac electrophysiology medical devices.
Project description:Reconfigurable electromagnetic devices, specifically reconfigurable antennas, have shown to be integral to the future of communication systems. However, mechanically robust designs that can survive real-world, harsh environment applications and high-power conditions remain rare to this day. In this paper, the general framework for a field of both discrete and continuously mechanically reconfigurable devices is established by combining compliant mechanisms with electromagnetics. To exemplify this new concept, a reconfigurable compliant mechanism antenna is demonstrated which exhibits continuously tunable performance across a broad band of frequencies. Moreover, three additional examples are also introduced that further showcase the versatility and advanced capabilities of compliant mechanism enabled electromagnetic devices. Unlike previous approaches, this is achieved with minimal part counts, additive manufacturing techniques, and high reliability, which mechanical compliant mechanism devices are known for. The results presented exemplify how compliant mechanisms have the capacity to transform the broader field of reconfigurable electromagnetic devices.
Project description:This paper presents a system-level efficiency analysis, a rapid design methodology, and a numerical demonstration of efficient sub-micron, spin-wave transducers in a microwave system. Applications such as Boolean spintronics, analog spin-wave-computing, and magnetic microwave circuits are expected to benefit from this analysis and design approach. These applications have the potential to provide a low-power, magnetic paradigm alternative to modern electronic systems, but they have been stymied by a limited understanding of the microwave, system-level design for spin-wave circuits. This paper proposes an end-to-end microwave/spin-wave system model that permits the use of classical microwave network analysis and matching theory towards analyzing and designing efficient transduction systems. This paper further compares magnetostatic-wave transducer theory to electromagnetic simulations and finds close agreement, indicating that the theory, despite simplifying assumptions, is useful for rapid yet accurate transducer design. It further suggests that the theory, when modified to include the exchange interaction, will also be useful to rapidly and accurately design transducers launching magnons at exchange wavelengths. Comparisons are made between microstrip and co-planar waveguide lines, which are expedient, narrowband, and low-efficiency transducers, and grating and meander lines that are capable of high-efficiency and wideband performance. The paper concludes that efficient microwave-to-spin-wave transducers are possible and presents a meander transducer design on YIG capable of launching [Formula: see text]nm spin waves with an efficiency of - 4.45 dB and a 3 dB-bandwidth of 134 MHz.