Ontology highlight
ABSTRACT: Motivation
Probabilistic Identification of bacterial essential genes using TraDIS data based on Tn5 libraries has received relatively little attention in the literature; most methods are designed for mariner transposon insertions. Analysis of Tn5 transposon-based genomic data is challenging due to the high insertion density and genomic resolution. We present a novel probabilistic Bayesian approach for classifying bacterial essential genes using transposon insertion density derived from transposon insertion sequencing data. We implement a Markov chain Monte Carlo sampling procedure to estimate the posterior probability that any given gene is essential. We implement a Bayesian decision theory approach to selecting essential genes. We assess the effectiveness of our approach via analysis of both simulated data and three previously published Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus datasets. These three bacteria have relatively well characterised essential genes which allows us to test our classification procedure using receiver operating characteristic curves and area under the curves. We compare the classification performance with that of Bio-Tradis, a standard tool for bacterial gene classification.Results
Our method is able to classify genes in the three datasets with areas under the curves between 0.967 and 0.983. Our simulated synthetic datasets show that both the number of insertions and the extent to which insertions are tolerated in the distal regions of essential genes are both important in determining classification accuracy. Importantly our method gives the user the option of classifying essential genes based on the user-supplied costs of false discovery and false non-discovery.Availability
An R package that implements the method presented in this paper is available for download from https://github.com/Kevin-walters/insdens.Supplementary information
Supplementary data are available at Bioinformatics online.
SUBMITTER: Nlebedim VU
PROVIDER: S-EPMC8652038 | biostudies-literature |
REPOSITORIES: biostudies-literature