Project description:AIMS: Diastolic reserve is the ability of left ventricular filling pressures to remain normal with exercise. Impaired diastolic reserve may be an early sign of diabetic cardiomyopathy. We aimed to determine whether diastolic reserve differs in type 2 diabetes (DM) compared with non-DM, and to identify clinical, anthropological, metabolic and resting echocardiographic correlates of impaired diastolic reserve in patients with DM. METHODS AND RESULTS: 237 patients (aged 53±11 years, 133 DM, ejection fraction 68±9%) underwent rest and exercise echocardiography. Mitral E and septal e' were measured at rest, immediately post, and 10 min into recovery. Analysis of covariance (ANCOVA) and binary regression with continuous outcomes were used to model e' and E/e' changes with exercise to identify impaired diastolic reserve defined as post-exercise E/e' ≥15. After adjusting for baseline differences, patients with DM immediately post-exercise had a lower septal e', a lower Δe' (1.2 vs 2.3 cm/s, p=0.006) and a higher Δ septal E/e' (1.7 vs 0.08, p<0.001) than patients without DM. In patients with normal resting E/e' of ≤8 (n=130), DM had a significantly higher post-exercise septal E/e' and a higher Δseptal E/e' (2.63 vs 0.50, p<0.001). E/e' in patients with DM remained significantly elevated up to 10 min post-exercise. Hypertension, longer duration of insulin therapy, poorer glycaemic control, worse renal function, larger left atrial volume and lower septal e' were independent correlates of impaired diastolic reserve in patients with DM. CONCLUSIONS: Patients with DM have impaired diastolic reserve manifest as a blunted e' response with exercise, persisting into recovery. Clinical, anthropometric, metabolic and echocardiographic correlates of impaired diastolic reserve in patients with DM were identified. An impaired LV diastolic reserve may be the underlying pathophysiological mechanism in patients with DM with unexplained exertional dyspnoea and may allow earlier detection of DM cardiomyopathy.
Project description:ObjectiveData on cardiac function in patients with nonalcoholic fatty liver disease (NAFLD) are limited and conflicting. We assessed whether NAFLD is associated with abnormalities in cardiac function in patients with type 2 diabetes.Research design and methodsWe studied 50 consecutive type 2 diabetic individuals without a history of ischemic heart disease, hepatic diseases, or excessive alcohol consumption, in whom NAFLD was diagnosed by ultrasonography. A tissue Doppler echocardiography with myocardial strain measurement was performed in all patients.ResultsThirty-two patients (64%) had NAFLD, and when compared with the other 18 patients, age, sex, BMI, waist circumference, hypertension, smoking, diabetes duration, microvascular complication status, and medication use were not significantly different. In addition, the left ventricular (LV) mass and volumes, ejection fraction, systemic vascular resistance, arterial elasticity, and compliance were also not different. NAFLD patients had lower e' (8.2 ± 1.5 vs. 9.9 ± 1.9 cm/s, P < 0.005) tissue velocity, higher E-to-e' ratio (7.90 ± 1.3 vs. 5.59 ± 1.1, P < 0.0001), a higher time constant of isovolumic relaxation (43.1 ± 10.1 vs. 33.2 ± 12.9 ms, P < 0.01), higher LV-end diastolic pressure (EDP) (16.5 ± 1.1 vs. 15.1 ± 1.0 mmHg, P < 0.0001), and higher LV EDP/end diastolic volume (0.20 ± 0.03 vs. 0.18 ± 0.02 mmHg, P < 0.05) than those without steatosis. Among the measurements of LV global longitudinal strain and strain rate, those with NAFLD also had higher E/global longitudinal diastolic strain rate during the early phase of diastole (E/SR(E)). All of these differences remained significant after adjustment for hypertension and other cardiometabolic risk factors.ConclusionsOur data show that in patients with type 2 diabetes and NAFLD, even if the LV morphology and systolic function are preserved, early features of LV diastolic dysfunction may be detected.
Project description:Sarcopenia is an aging condition involving low muscle mass and function. Fetuin-A (FetA) appears to be a factor for body composition remodeling. We hypothesized that age increases FetA levels and deteriorates the myocardial function by affecting diastolic function, especially in people with sarcopenia. We enrolled 541 asymptomatic elderly (≥ 65 years) patients. Compared with non-sarcopenic population, FetA levels were significantly elevated in the ninety-two (17%) patients (79 ± 6 years; male: 34.7%) diagnosed with sarcopenia (621.1 ± 140.7 vs. 697.3 ± 179.6 μg/ml, < 0.001). Sarcopenic left ventricular dysfunction (S-LVD) was defined by the coexistence of sarcopenia and systolic impairment (LVEF < 50%) and 23 (4.3%) of them met the criteria. Patients with S-LVD showed relatively reduced systolic heart function, higher end-diastolic pressure and a higher FetA level (all p < 0.001) than did those with sarcopenia but without LV dysfunction (S-NLVD). Conversely, in the group without sarcopenia, FetA levels were similar regardless of systolic function. Multivariable logistic regression showed that older age, impaired diastolic function, and higher FetA levels were significantly associated with S-LVD. In conclusion, we found that FetA was significantly higher in elderly patients with sarcopenia, which was associated with impaired diastolic and systolic functions.
Project description:BackgroundThe level of serum uric acid (SUA) has been reported to be associated with left ventricular hypertrophy (LVH) and left ventricular diastolic dysfunction (LVDD). However, this association remains unclear in patients with chronic kidney disease (CKD).MethodsA total of 1025 patients with pre-dialysis CKD with preserved left ventricular systolic function were enrolled in this cross-sectional study. The LVH and LVDD were assessed using two-dimensional echocardiography and tissue Doppler imaging. The associations of LVH/LVDD with clinical and laboratory variables were investigated using univariable and multivariable logistic regression analyses.ResultsIn a multivariable analysis, the SUA level was an independent predictor of LVH (odds ratio [OR]: 1.40, 95% confidence interval [CI]: 1.31-1.50, P < 0.001). In addition, patient age, systolic blood pressure, intact parathyroid hormone levels, and left atrial volume index levels were independent predictors of LVH. The SUA level was also an independent predictor of LVDD (OR: 1.93, 95% CI: 1.53-2.43, P < 0.001). Furthermore, systolic blood pressure and left atrial volume index levels were an independent predictor of LVDD. Receiver-operating characteristic curve analysis showed that the best cutoff values of SUA levels for identifying LVH and LVDD were ≥ 7.5 mg/dL and ≥ 6.3 mg/dL, respectively.ConclusionThe SUA level was an independent predictor of LVD and LVDD in patients with CKD, suggesting that SUA could be a biomarker for LVH and LVDD.
Project description:BackgroundLeft ventricular (LV) involvement in diabetic cardiomyopathy has been reported; however, only limited data exist on right ventricular (RV) involvement. Therefore, our purpose was to investigate RV systolic dysfunction and its association with LV longitudinal myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM) and preserved LV ejection fraction (LVEF).MethodsWe studied 177 T2DM patients with preserved LVEF and 79 age-, sex-, and LVEF-matched healthy volunteers. LV longitudinal myocardial function was assessed as global longitudinal strain (GLS), and RV systolic function was assessed as RV free-wall strain, and predefined cutoff values for subclinical dysfunction were set at GLS < 18% and RV free-wall strain < 20%, respectively.ResultsRV free-wall strain in T2DM patients was significantly lower than that in normal controls (19.3% ± 4.8% vs. 24.4% ± 5.1%; P < 0.0001). RV free-wall strain in T2DM patients and LV longitudinal dysfunction was similar compared to that in T2DM patients without (19.0 ± 4.5% vs. 19.6 ± 5.0%, P = 0.40). Furthermore, multivariate logistic regression analyses showed that GLS was independently associated with RV systolic dysfunction as well as mitral inflow E and mitral e' annular velocities ratio (odds ratio, 1.16; 95% confidence interval: 1.03-1.31; P < 0.05). Sequential logistic models evaluating the association of RV systolic dysfunction in T2DM patients showed an improvement in clinical variables (χ2 = 6.2) with the addition of conventional echocardiographic parameters (χ2 = 13.4, P < 0.001) and a further improvement with the addition of GLS (χ2 = 20.8, P < 0.001).ConclusionRV subclinical systolic dysfunction was observed in T2DM patients with preserved LVEF and was associated with LV longitudinal myocardial dysfunction. Our findings may provide additional findings for the management of T2DM patients.
Project description:PurposeTo assess the impact of left ventricular (LV) diastolic dysfunction on left atrial (LA) phasic volume and function using dual-source CT (DSCT) and to find a viable alternative prognostic parameter of CT for LV diastolic dysfunction through quantitative evaluation of LA phasic volume and function in patients with LV diastolic dysfunction.Materials and methodsSeventy-seven patients were examined using DSCT and Doppler echocardiography on the same day. Reservoir, conduit, and contractile function of LA were evaluated by measuring LA volume (LAV) during different cardiac phases and all parameters were normalized to body surface area (BSA). Patients were divided into four groups (normal, impaired relaxation, pseudonormal, and restrictive LV diastolic filling) according to echocardiographic findings. The LA phasic volume and function in different stages of LV diastolic function was compared using one-way ANOVA analysis. The correlations between indexed volume of LA (LAVi) and diastolic function in different stages of LV were evaluated using Spearman correlation analysis.ResultsLA ejection fraction (LAEF), LA contraction, reservoir, and conduit function in patients in impaired relaxation group were not different from those in the normal group, but they were lower in patients in the pseudonormal and restrictive LV diastolic dysfunction groups (P < 0.05). For LA conduit function, there were no significant differences between the patients in the pseudonormal group and restrictive filling group (P = 0.195). There was a strong correlation between the indexed maximal left atrial volume (LAVmax, r = 0.85, P < 0.001), minimal left atrial volume (LAVmin, r = 0.91, P < 0.001), left atrial volume at the onset of P wave (LAVp, r = 0.84, P < 0.001), and different stages of LV diastolic function. The LAVi increased as the severity of LV diastolic dysfunction increased.ConclusionsLA remodeling takes place in patients with LV diastolic dysfunction. At the same time, LA phasic volume and function parameters evaluated by DSCT indicated the severity of the LV diastolic dysfunction. Quantitative analysis of LA phasic volume and function parameters using DSCT could be a viable alternative prognostic parameter of LV diastolic function.
Project description:BackgroundCirculating thrombospondin-2 (TSP2) levels were associated with the development of heart failure (HF) in recent studies. However, these studies included only a minority of patients with type 2 diabetes, which is associated with an increased HF risk. As hyperglycemia induces TSP2 expression and its tissue expression increases in type 2 diabetes, we investigated the prospective association of circulating TSP2 with incident HF hospitalization (HHF), and its associations with longitudinal changes of echocardiographic parameters in type 2 diabetes.MethodsBaseline serum TSP2 levels were measured in 4949 patients with type 2 diabetes to determine its association with incident HHF using multivariable Cox regression analysis. In the echocardiographic study, baseline serum TSP2 levels were measured in another 146 patients with type 2 diabetes but without cardiovascular diseases who underwent detailed transthoracic echocardiography at baseline and after 1 year.ResultsOver a median follow-up of 7.8 years, 330 of 4949 patients (6.7%) developed incident HHF. Baseline serum TSP2 levels were independently associated with the development of HHF (HR 1.31, 95%CI 1.06-1.62, p = 0.014) after adjustments for baseline conventional cardiovascular risk factors, atrial fibrillation, estimated glomerular filtration rate, albuminuria and high-sensitivity C-reactive protein level, use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, loop-diuretics, aspirin, insulin, metformin and sodium-glucose co-transporter 2 inhibitors. Moreover, baseline serum TSP2 levels were independently associated with increase in average E/e' and left atrial volume index (p = 0.04 and < 0.01, respectively).ConclusionSerum TSP2 levels were independently associated with both incident HHF and deterioration in diastolic function in type 2 diabetes.Trial registrationNot Applicable.
Project description:The aim of this study was to examine the associations of isolated minor nonspecific ST-T abnormalities (NSSTTA) on 12-lead electrocardiogram (ECG) with left ventricular (LV) diastolic function and LV geometry on echocardiography. A cross-sectional study comprised of 74,976 Koreans who underwent ECG and echocardiography as part of a comprehensive health examination between March 2011 and December 2014. ECG was coded using Minnesota Code criteria. The frequencies of NSSTTA, impaired LV relaxation, and echocardiographic LVH were 1,139 (1.5%), 21,118 (28.2%), and 1,687 (2.3%) patients, respectively. The presence of NSSTTA was positively associated with the prevalence of impaired LV relaxation and LVH on echocardiography. In a multivariable-adjusted model, the odds ratio (95% CIs) comparing patients with NSSTTA to control patients was 1.55 (1.33-1.80) for impaired LV relaxation and 3.15 (2.51-3.96) for echocardiographic LVH. The association between NSSTTA and impaired LV relaxation was stronger in the intermediate to high cardiovascular disease-risk group than in the low-risk group according to Framingham Risk Score stratification (P for interaction?=?0.02). NSSTTA were associated with increased prevalence of impaired LV relaxation and LVH, suggesting NSSTTA as an early indicator of subclinical cardiac dysfunction and geometric abnormalities.
Project description:BackgroundPatients with chronic kidney disease (CKD) and coincident heart failure with preserved ejection fraction (HFpEF) may constitute a distinct HFpEF phenotype. Osteopontin (OPN) is a biomarker of HFpEF and predictive of disease outcome. We recently reported that OPN blockade reversed hypertension, mitochondrial dysfunction, and kidney failure in Col4a3-/- mice, a model of human Alport syndrome.ObjectivesThe purpose of this study was to identify potential OPN targets in biopsies of HF patients, healthy control subjects, and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), and to characterize the cardiac phenotype of Col4a3-/- mice, relate this to HFpEF, and investigate possible causative roles for OPN in driving the cardiomyopathy.MethodsOGDHL mRNA and protein were quantified in myocardial samples from patients with HFpEF, heart failure with reduced ejection fraction, and donor control subjects. OGDHL expression was quantified in hiPS-CMs treated with or without anti-OPN antibody. Cardiac parameters were evaluated in Col4a3-/- mice with and without global OPN knockout or AAV9-mediated delivery of 2-oxoglutarate dehydrogenase-like (Ogdhl) to the heart.ResultsOGDHL mRNA and protein displayed abnormal abundances in cardiac biopsies of HFpEF (n = 17) compared with donor control subjects (n = 12; p < 0.01) or heart failure with reduced ejection fraction patients (n = 12; p < 0.05). Blockade of OPN in hiPS-CMs conferred increased OGDHL expression. Col4a3-/- mice demonstrated cardiomyopathy with similarities to HFpEF, including diastolic dysfunction, cardiac hypertrophy and fibrosis, pulmonary edema, and impaired mitochondrial function. The cardiomyopathy was ameliorated by Opn-/- coincident with improved renal function and increased expression of Ogdhl. Heart-specific overexpression of Ogdhl in Col4a3-/- mice also improved cardiac function and cardiomyocyte energy state.ConclusionsCol4a3-/- mice present a model of HFpEF secondary to CKD wherein OPN and OGDHL are intermediates, and possibly therapeutic targets.
Project description:Background and objectivesLeft ventricular diastolic dysfunction is known to be a marker of myocardial damage, in particular myocardial fibrosis resulting from hypertension (HT). However, few studies have shown an association between the grade of diastolic dysfunction and blood pressure classification. We investigated the association between diastolic dysfunction and prehypertension (preHT) in apparently healthy adults who underwent routine health examinations.Subjects and methodsThe study sample included 4261 Koreans, 45 to 64 years of age with no previous history of HT, diabetes mellitus, malignancy, proven coronary artery disease, or valvular heart disease based on echocardiography, who underwent routine health examinations including echocardiography. The subjects were classified into three groups based on resting blood pressure: prehypertensive, hypertensive, and normotensive.ResultsThe prevalence of preHT in our study was 42.1%. After adjusting for age, gender, smoking status, alcohol consumption, fasting blood sugar, serum lipid profile, and body mass index, left ventricular diastolic dysfunction grades 1 and 2 were significantly more frequent in subjects with preHT (odds ratio [OR] 1.66 [95% confidence interval {CI} 1.40-1.96] and 1.37 [95% CI 0.95-1.97], respectively). When analyzed according to gender, the increased OR was especially notable in males.ConclusionLeft ventricular diastolic dysfunction appears to be significantly associated with preHT in Korean middle-aged males.