Project description:The pathologist Jack N. P. Davies identified endomyocardial fibrosis in Uganda in 1947. Since that time, reports of this restrictive cardiomyopathy have come from other parts of tropical Africa, South Asia, and South America. In Kampala, the disease accounts for 20% of heart disease patients referred for echocardiography. We conducted a systematic review of research on the epidemiology and etiology of endomyocardial fibrosis. We relied primarily on articles in the MEDLINE database with either "endomyocardial fibrosis" or "endomyocardial sclerosis" in the title. The volume of publications on endomyocardial fibrosis has declined since the 1980s. Despite several hypotheses regarding cause, no account of the etiology of this disease has yet fully explained its unique geographical distribution.
Project description:One of the greatest mysteries for most of the twentieth century was the fate of the Romanov family, the last Russian monarchy. Following the abdication of Tsar Nicholas II, he and his wife, Alexandra, and their five children were eventually exiled to the city of Yekaterinburg. The family, along with four loyal members of their staff, was held captive by members of the Ural Soviet. According to historical reports, in the early morning hours of July 17, 1918 the entire family along with four loyal members of their staff was executed by a firing squad. After a failed attempt to dispose of the remains in an abandoned mine shaft, the bodies were transported to an open field only a few kilometers from the mine shaft. Nine members of the group were buried in one mass grave while two of the children were buried in a separate grave. With the official discovery of the larger mass grave in 1991, and subsequent DNA testing to confirm the identities of the Tsar, the Tsarina, and three of their daughters--doubt persisted that these remains were in fact those of the Romanov family. In the summer of 2007, a group of amateur archeologists discovered a collection of remains from the second grave approximately 70 meters from the larger grave. We report forensic DNA testing on the remains discovered in 2007 using mitochondrial DNA (mtDNA), autosomal STR, and Y-STR testing. Combined with additional DNA testing of material from the 1991 grave, we have virtually irrefutable evidence that the two individuals recovered from the 2007 grave are the two missing children of the Romanov family: the Tsarevich Alexei and one of his sisters.
Project description:Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by the presence of febrile and afebrile seizures. The first gene, GEFS1, was mapped to chromosome 19q and was identified as the sodium-channel beta1-subunit, SCN1B. A second locus on chromosome 2q, GEFS2, was recently identified as the sodium-channel alpha1-subunit, SCN1A. Single-stranded conformation analysis (SSCA) of SCN1A was performed in 53 unrelated index cases to estimate the frequency of mutations in patients with GEFS+. No mutations were found in 17 isolated cases of GEFS+. Three novel SCN1A mutations-D188V, V1353L, and I1656M-were found in 36 familial cases; of the remaining 33 families, 3 had mutations in SCN1B. On the basis of SSCA, the combined frequency of SCN1A and SCN1B mutations in familial cases of GEFS+ was found to be 17%.
Project description:The oceanic bathypelagic realm (1000-4000 m) is a nutrient-poor habitat. Most fishes living there have pelagic larvae using the rich waters of the upper 200 m. Morphological and behavioural specializations necessary to occupy such contrasting environments have resulted in remarkable developmental changes and life-history strategies. We resolve a long-standing biological and taxonomic conundrum by documenting the most extreme example of ontogenetic metamorphoses and sexual dimorphism in vertebrates. Based on morphology and mitogenomic sequence data, we show that fishes currently assigned to three families with greatly differing morphologies, Mirapinnidae (tapetails), Megalomycteridae (bignose fishes) and Cetomimidae (whalefishes), are larvae, males and females, respectively, of a single family Cetomimidae. Morphological transformations involve dramatic changes in the skeleton, most spectacularly in the head, and are correlated with distinctly different feeding mechanisms. Larvae have small, upturned mouths and gorge on copepods. Females have huge gapes with long, horizontal jaws and specialized gill arches allowing them to capture larger prey. Males cease feeding, lose their stomach and oesophagus, and apparently convert the energy from the bolus of copepods found in all transforming males to a massive liver that supports them throughout adult life.
Project description:Ketogenic diet (KD) has been used to treat epilepsy for 100 years. It is a high-fat, low-carbohydrate, and sufficient-protein-for-growth diet that mimics the metabolic changes occurring during starvation. Except for classic KD, its modified counterparts, including modified Atkins diet and low-glycemic-index treatment, have gained grounds to increase palatability and adherence. Strong evidence exists that the KD offers protection against seizures in difficult-to-treat epilepsy and possesses long-lasting anti-epileptic activity, improving long-term disease outcome. The KD can also provide symptomatic and disease-modifying activity in a wide range of neurodegenerative diseases. In an era of highly available new anti-seizure medications (ASMs), the challenge of refractory epilepsy has still not been solved. This metabolic therapy is increasingly considered due to unique mechanisms and turns out to be a powerful tool in the hands of a skillful team. Despite decades of extensive research to explain the mechanism of its efficacy, the precise mechanism of action is to date still largely unknown. The key feature of this successful diet is the fact that energy is derived largely from fat but not from carbohydrates. Consequently, fundamental change occurs regarding the method of energy production that causes alterations in numerous biochemical pathways, thus restoring energetic and metabolic homeostasis of the brain. There are barriers during the use of this special and individualized therapy in many clinical settings worldwide. The aim of this review is to revisit the current state of the art of therapeutic application of KD in refractory epilepsy.
Project description:ObjectiveWe studied the frequency of auras in generalized epilepsy (GE) using a detailed semistructured diagnostic interview.MethodsIn this cross-sectional study, participants with GE were drawn from the Epilepsy Phenome/Genome Project (EPGP). Responses to the standardized diagnostic interview regarding tonic-clonic (grand mal) seizures were then examined. This questionnaire initially required participants to provide their own description of any subjective phenomena before their "grand mal seizures." Participants who provided answers to these questions were considered to have an aura. All participants were then systematically queried regarding a list of specific symptoms occurring before grand mal seizures, using structured (closed-ended) questions.ResultsSeven hundred ninety-eight participants with GE were identified, of whom 530 reported grand mal seizures. Of these, 112 (21.3%) reported auras in response to the open-ended question. Analysis of responses to the closed-ended questions suggested that 341 participants (64.3%) experienced at least one form of aura.ConclusionsAuras typically associated with focal epilepsy were reported by a substantial proportion of EPGP subjects with GE. This finding may support existing theories of cortical and subcortical generators of GE with variable spread patterns. Differences between responses to the open-ended question and closed-ended questions may also reflect clinically relevant variation in patient responses to history-taking and surveys. Open-ended questions may underestimate the prevalence of specific types of auras and may be in part responsible for the underrecognition of auras in GE. In addition, structured questions may influence participants, possibly leading to a greater representation of symptoms.
Project description:Systemic lupus erythematosus (SLE) is a chronic inflammatory connective tissue disease with varying clinical manifestations. Recent studies have proposed that leptin may be related to SLE development. This study aims to assess current information regarding the relationship between leptin and SLE. A systematic search was done using PubMed, Google Scholar, ScienceDirect, Epistemonikos, and Cochrane Library databases. Studies published in the English language in the last 10 years were selected based on predefined eligibility criteria. The quality of the studies was evaluated using the Newcastle-Ottawa Scale and the Assessment of Multiple Systematic Reviews 2 tool. A total of 12 studies were included in this systematic review. These included systematic reviews/meta-analyses, cross-sectional studies, and case-control studies. Based on the findings of this review, we conclude thatleptin is significantly elevated in SLE patients; however, it does not seem to correlate with disease activity. The exact mechanism of leptin in the pathogenesis of the disease remains unknown and further research is needed regarding this aspect.
Project description:Pseudogenes were once considered as "junk DNA", due to loss of their functions as a result of the accumulation of mutations, such as frameshift and presence of premature stop-codons and relocation of genes to inactive heterochromatin regions of the genome. Pseudogenes are divided into two large groups, processed and unprocessed, according to their primary structure and origin. Only 10% of all pseudogenes are transcribed into RNAs and participate in the regulation of parental gene expression at both transcriptional and translational levels through senseRNA (sRNA) and antisense RNA (asRNA). In this review, about 150 pseudogenes in the different types of cancers were analyzed. Part of these pseudogenes seem to be useful in molecular diagnostics and can be detected in various types of biological material including tissue as well as biological fluids (liquid biopsy) using different detection methods. The number of pseudogenes, as well as their function in the human genome, is still unknown. However, thanks to the development of various technologies and bioinformatic tools, it was revealed so far that pseudogenes are involved in the development and progression of certain diseases, especially in cancer.
Project description:Activity-dependent myelination can fine-tune neural network dynamics. Conversely, aberrant neuronal activity, as occurs in disorders of recurrent seizures (epilepsy), could promote maladaptive myelination, contributing to pathogenesis. In this study, we tested the hypothesis that activity-dependent myelination resulting from absence seizures, which manifest as frequent behavioral arrests with generalized electroencephalography (EEG) spike-wave discharges, promote thalamocortical network hypersynchrony and contribute to epilepsy progression. We found increased oligodendrogenesis and myelination specifically within the seizure network in two models of generalized epilepsy with absence seizures (Wag/Rij rats and Scn8a+/mut mice), evident only after epilepsy onset. Aberrant myelination was prevented by pharmacological seizure inhibition in Wag/Rij rats. Blocking activity-dependent myelination decreased seizure burden over time and reduced ictal synchrony as assessed by EEG coherence. These findings indicate that activity-dependent myelination driven by absence seizures contributes to epilepsy progression; maladaptive myelination may be pathogenic in some forms of epilepsy and other neurological diseases.
Project description:Two mutations that cause generalized epilepsy with febrile seizures plus (GEFS+) have been identified previously in the SCN1A gene encoding the alpha subunit of the Na(v)1.1 voltage-gated sodium channel (Escayg et al., 2000). Both mutations change conserved residues in putative voltage-sensing S4 segments, T875M in domain II and R1648H in domain IV. Each mutation was cloned into the orthologous rat channel rNa(v)1.1, and the properties of the mutant channels were determined in the absence and presence of the beta1 subunit in Xenopus oocytes. Neither mutation significantly altered the voltage dependence of either activation or inactivation in the presence of the beta1 subunit. The most prominent effect of the T875M mutation was to enhance slow inactivation in the presence of beta1, with small effects on the kinetics of recovery from inactivation and use-dependent activity of the channel in both the presence and absence of the beta1 subunit. The most prominent effects of the R1648H mutation were to accelerate recovery from inactivation and decrease the use dependence of channel activity with and without the beta1 subunit. The DIV mutation would cause a phenotype of sodium channel hyperexcitability, whereas the DII mutation would cause a phenotype of sodium channel hypoexcitability, suggesting that either an increase or decrease in sodium channel activity can result in seizures.