Unknown

Dataset Information

0

Design of a High-Sensitivity Dimeric G-Quadruplex/Hemin DNAzyme Biosensor for Norovirus Detection.


ABSTRACT: G-quadruplexes can bind with hemin to form peroxidase-like DNAzymes that are widely used in the design of biosensors. However, the catalytic activity of G-quadruplex/hemin DNAzyme is relatively low compared with natural peroxidase, which hampers its sensitivity and, thus, its application in the detection of nucleic acids. In this study, we developed a high-sensitivity biosensor targeting norovirus nucleic acids through rationally introducing a dimeric G-quadruplex structure into the DNAzyme. In this strategy, two separate molecular beacons each having a G-quadruplex-forming sequence embedded in the stem structure are brought together through hybridization with a target DNA strand, and thus forms a three-way junction architecture and allows a dimeric G-quadruplex to form, which, upon binding with hemin, has a synergistic enhancement of catalytic activities. This provides a high-sensitivity colorimetric readout by the catalyzing H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline -6-sulfonic acid) diammonium salt (ABTS). Up to 10 nM of target DNA can be detected through colorimetric observation with the naked eye using our strategy. Hence, our approach provides a non-amplifying, non-labeling, simple-operating, cost-effective colorimetric biosensing method for target nucleic acids, such as norovirus-conserved sequence detection, and highlights the further implication of higher-order multimerized G-quadruplex structures in the design of high-sensitivity biosensors.

SUBMITTER: Zhang Y 

PROVIDER: S-EPMC8659037 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8682752 | biostudies-literature
| S-EPMC9075509 | biostudies-literature
| S-EPMC8163442 | biostudies-literature
| S-EPMC8398021 | biostudies-literature
| S-EPMC3458538 | biostudies-literature
| S-EPMC8276600 | biostudies-literature
| S-EPMC7581286 | biostudies-literature
| S-EPMC7435396 | biostudies-literature
| S-EPMC5009756 | biostudies-literature
| S-EPMC8213197 | biostudies-literature