Project description:Healthcare workers (HCWs) remain on the front line of the battle against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) infection and are among the highest groups at risk of infection during this raging pandemic. We conducted a systematic review and meta-analysis to assess the incidence of postvaccination SARS-CoV-2 infection among vaccinated HCWs. We searched multiple databases from inception through August 2021 to identify studies that reported on the incidence of postvaccination SARS-CoV-2 infection among HCWs. Meta-analysis was performed to determine pooled proportions of COVID-19 infection in partially/fully vaccinated as well as unvaccinated individuals. Eighteen studies with 228 873 HCWs were included in the final analysis. The total number of partially vaccinated, fully vaccinated, and unvaccinated HCWs were 132 922, 155 673, and 17 505, respectively. Overall pooled proportion of COVID-19 infections among partially/fully vaccinated and unvaccinated HCWs was 2.1% (95% confidence interval [CI] 1.2-3.5). Among partially vaccinated, fully vaccinated and unvaccinated HCWs, pooled proportion of COVID-19 infections was 2.3% (CI 1.2-4.4), 1.3% (95% CI 0.6-2.9), and 10.1% (95% CI 4.5-19.5), respectively. Our analysis shows the risk of COVID-19 infection in both partially and fully vaccinated HCWs remains exceedingly low when compared to unvaccinated individuals. There remains an urgent need for all frontline HCWs to be vaccinated against SARS-CoV-2 infection.
Project description:Background and aimsMonitoring the immune response against SARS-CoV-2 is pivotal in the evaluation of long-term vaccine efficacy. Immunoglobulin G (IgG) antibodies represent an advisable tool to reach this goal, especially for the still poorly defined antibody trend induced by the new class of mRNA vaccines against SARS-CoV-2.Materials and methodsAnti-Spike RBD IgG antibodies were monitored in a cohort of healthcare workers at CRO Aviano, National Cancer Institute, through MAGLUMI® chemiluminescence assay, at 1 and 4 months after full-schedule of BNT162b2 or mRNA-1273 vaccination.ResultsAt 1 month after vaccination, 99.9% of 767 healthcare workers showed a reactive antibody response, which was inversely correlated with age, and positively associated with a previous history of COVID-19, and mRNA-1273 vaccination. Serological response was maintained in 99.6% of the 516 subjects monitored also at follow-up. An antibody decay from 559.8 AU/mL (IQR 359.7-845.7) to 92.7 AU/mL (IQR 65.1-148.6; p < 0.001) was observed, independently from age and sex.ConclusionOur data supported the ability of SARS-CoV-2 mRNA vaccines to induce at least a 4 months-lasting IgG response, even outside the rules of clinical trials. The antibody decay observed at follow-up suggested to deepen the immune response characterization to identify subjects with low anti-SARS-CoV-2 immunity possibly requiring a vaccination boost.
Project description:BackgroundIn early 2021, the SARS-CoV-2 lineage B.1.1.7 (Alpha variant) became dominant across large parts of the world. In Denmark, comprehensive and real-time test, contact-tracing, and sequencing efforts were applied to sustain epidemic control. Here, we use these data to investigate the transmissibility, introduction, and onward transmission of B.1.1.7 in Denmark.MethodsWe analyzed a comprehensive set of 60,178 SARS-CoV-2 genomes generated from high-throughput sequencing by the Danish COVID-19 Genome Consortium, representing 34% of all positive cases in the period 14 November 2020 to 7 February 2021. We calculated the transmissibility of B.1.1.7 relative to other lineages using Poisson regression. Including all 1976 high-quality B.1.1.7 genomes collected in the study period, we constructed a time-scaled phylogeny, which was coupled with detailed travel history and register data to outline the introduction and onward transmission of B.1.1.7 in Denmark.ResultsIn a period with unchanged restrictions, we estimated an increased B.1.1.7 transmissibility of 58% (95% CI: [56%, 60%]) relative to other lineages. Epidemiological and phylogenetic analyses revealed that 37% of B.1.1.7 cases were related to the initial introduction in November 2020. The relative number of cases directly linked to introductions varied between 10 and 50% throughout the study period.ConclusionsOur findings corroborate early estimates of increased transmissibility of B.1.1.7. Both substantial early expansion when B.1.1.7 was still unmonitored and continuous foreign introductions contributed considerably to case numbers. Finally, our study highlights the benefit of balanced travel restrictions and self-isolation procedures coupled with comprehensive surveillance efforts, to sustain epidemic control in the face of emerging variants.
Project description:Mass vaccination against the disease caused by the novel coronavirus (COVID-19) was a crucial step in slowing the spread of SARS-CoV-2 in 2021. Even in the face of new variants, it still remains extremely important for reducing hospitalizations and COVID-19 deaths. In order to better understand the short- and long-term dynamics of humoral immune response, we present a longitudinal analysis of post-vaccination IgG levels in a cohort of 166 Romanian healthcare workers vaccinated with BNT162b2 with weekly follow-up until 35 days past the first dose and monthly follow-up up to 6 months post-vaccination. A subset of the patients continued with follow-up after 6 months and either received a booster dose or got infected during the Delta wave in Romania. Tests were carried out on 1694 samples using a CE-marked IgG ELISA assay developed in-house, containing S1 and N antigens of the wild type virus. Participants infected with SARS-CoV-2 before vaccination mount a quick immune response, reaching peak IgG levels two weeks after the first dose, while IgG levels of previously uninfected participants mount gradually, increasing abruptly after the second dose. Overall higher IgG levels are maintained for the previously infected group throughout the six month primary observation period (e.g. 36-65 days after the first dose, the median value in the previously infected group is 5.29 AU/ml, versus 3.58 AU/ml in the infection naïve group, p less than 0.001). The decrease of IgG levels is gradual, with lower median values in the infection naïve cohort even 7-8 months after vaccination, compared to the previously infected cohort (0.7 AU/ml versus 1.29 AU/ml, p = 0.006). Administration of a booster dose yielded higher median IgG antibody levels than post second dose in the infection naïve group and comparable levels in the previously infected group.
Project description:The objective of this longitudinal cohort study was to determine the seroprevalence of antibodies to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in healthcare workers employed at healthcare settings in three rural counties in eastern South Dakota and western Minnesota from May 13, 2020, through December 22, 2020. Three blood draws were performed at five clinical sites and tested for the presence of antibodies against the SARS-CoV-2. Serum samples were tested for the presence of antibodies using a fluorescent microsphere immunoassay (FMIA), neutralization of SARS-CoV-2 spike-pseudotyped particles (SARS-CoV-2pp) assay, and serum virus neutralization (SVN) assay. The seroprevalence was determined to be 1/336 (0.29%) for samples collected from 5/13/20 to 7/13/20, 5/260 (1.92%) for samples collected from 8/13/20 to 9/25/20, and 35/235 (14.89%) for samples collected from 10/16/20 to 12/22/20. Eight of the 35 (22.8%) seropositive individuals identified in the final draw did not report a previous diagnosis with COVID-19. There was a high correlation (>90%) between the FMIA and virus neutralization assays. Each clinical site's seroprevalence was higher than the cumulative incidence for the general public in the respective county as reported by state public health agencies. As of December 2020, there was a high percentage (85%) of seronegative individuals in the study population.
Project description:On January 5 2021, Ecuadorian COVID-19 genomic surveillance program detected a suspicious case of the B.1.1.7 lineage (alpha variant) of SARS-CoV-2 in Los Rios province, later confirmed by genome sequencing. The patient travelled from the UK by the end of December 2020. By contact tracing, several new cases were detected confirming B.1.1.7 transmission and spreading in Ecuador.
Project description:Airborne transmission, a term combining both large droplet and aerosol transmission, is thought to be the main transmission route of SARS-CoV-2. Here we investigated the relative efficiency of aerosol transmission of two variants of SARS-CoV-2, B.1.1.7 (alpha) and lineage A, in the Syrian hamster. A novel transmission caging setup was designed and validated, which allowed the assessment of transmission efficiency at various distances. At 2 meters distance, only particles <5 µm traversed between cages. In this setup, aerosol transmission was confirmed in 8 out of 8 (N = 4 for each variant) sentinels after 24 hours of exposure as demonstrated by respiratory shedding and seroconversion. Successful transmission occurred even when exposure time was limited to one hour, highlighting the efficiency of this transmission route. Interestingly, the B.1.1.7 variant outcompeted the lineage A variant in an airborne transmission chain after mixed infection of donors. Combined, this data indicates that the infectious dose of B.1.1.7 required for successful transmission may be lower than that of lineage A virus. The experimental proof for true aerosol transmission and the increase in the aerosol transmission potential of B.1.1.7 underscore the continuous need for assessment of novel variants and the development or preemptive transmission mitigation strategies.
Project description:Airborne transmission, a term combining both large droplet and aerosol transmission, is thought to be the main transmission route of SARS-CoV-2. Here we investigated the relative efficiency of aerosol transmission of two variants of SARS-CoV-2, B.1.1.7 (alpha) and lineage A, in the Syrian hamster. A novel transmission caging setup was designed and validated, which allowed the assessment of transmission efficiency at various distances. At 2 meters distance, only particles <5 µm traversed between cages. In this setup, aerosol transmission was confirmed in 8 out of 8 (N = 4 for each variant) sentinels after 24 hours of exposure as demonstrated by respiratory shedding and seroconversion. Successful transmission occurred even when exposure time was limited to one hour, highlighting the efficiency of this transmission route. Interestingly, the B.1.1.7 variant outcompeted the lineage A variant in an airborne transmission chain after mixed infection of donors. Combined, this data indicates that the infectious dose of B.1.1.7 required for successful transmission may be lower than that of lineage A virus. The experimental proof for true aerosol transmission and the increase in the aerosol transmission potential of B.1.1.7 underscore the continuous need for assessment of novel variants and the development or preemptive transmission mitigation strategies.
Project description:SARS-CoV-2 reverse zoonosis, particularly to domestic animals, and the potential role of infected animals in perpetuating the spread of the virus is an issue of increasing concern. In this case report, we identified the natural infection of two cats by SARS-CoV-2, in Argentina, whose owner had been previously infected by SARS-CoV-2. Viral genetic material was detected in feline oropharyngeal (OP) and rectal (R) swab by RT-qPCR, and sequence analysis revealed that the virus infecting the owner and one cat were genetically similar. The alpha variant (B.1.1.7 lineage) was identified with a unique additional mutation, strongly suggesting human-to-cat route of transmission. This study reinforces the One Health concept and the importance of integrating human, animal, and environmental perspectives to promptly address relevant health issues.
Project description:Background COVID-19 pandemic has a devastating impact on the economies and health care system of sub-Saharan Africa. Healthcare workers (HWs), the main actors of the health system, are at higher-risk because of their occupation. Serology-based estimates of SARS-CoV-2 infection among HWs represent a measure of HWs’ exposure to the virus and a guide to the prevalence of SARS-CoV-2 in the community. This information is currently lacking in Ethiopia and other African countries. This study aimed to develop an in-house antibody testing assay, assess the prevalence of SARS-CoV-2 antibodies among Ethiopian high-risk frontline HWs. Methods A cross-sectional seroprevalence study was conducted among HWs in five public hospitals located in different geographic regions of Ethiopia. Socio-demographic and clinical data were collected using questionnaire-based interviews. From consenting HWs, blood samples were collected between December 2020 and February 2021, the period between the two peaks of COVID-19 in Ethiopia. The collected sera were tested using an in-house immunoglobin G (IgG) enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 specific antibodies on sera collected from HWs. Results Of 1,997 HWs who provided a blood sample, demographic and clinical data, 50.5% were female, 74.0% had no symptoms compatible with COVID-19, and 29.0% had history of contact with suspected or confirmed patient with SARS-CoV-2 infection. The overall seroprevalence was 39.6%. The lowest (24.5%) and the highest (48.0%) seroprevalence rates were found in Hiwot Fana Specialized Hospital in Harar and ALERT Hospital in Addis Ababa, respectively. Of the 821 seropositive HWs, 224(27.3%) had history of symptoms consistent with COVID-19. A history of close contact with suspected/confirmed COVID-19 cases was strongly associated with seropositivity (Adjusted odds Ratio (AOR) =1.4, 95% CI 1.1-1.8; p=0.015). Conclusion High SARS-CoV-2 seroprevalence levels were observed in the five Ethiopian hospitals. These findings highlight the significant burden of asymptomatic infection in Ethiopia, and may reflect the scale of transmission in the general population.