Project description:Metabolic network models are increasingly being used in health care and industry. As a consequence, many tools have been released to automate their reconstruction process de novo. In order to enable gene deletion simulations and integration of gene expression data, these networks must include gene-protein-reaction (GPR) rules, which describe with a Boolean logic relationships between the gene products (e.g., enzyme isoforms or subunits) associated with the catalysis of a given reaction. Nevertheless, the reconstruction of GPRs still remains a largely manual and time consuming process. Aiming at fully automating the reconstruction process of GPRs for any organism, we propose the open-source python-based framework GPRuler. By mining text and data from 9 different biological databases, GPRuler can reconstruct GPRs starting either from just the name of the target organism or from an existing metabolic model. The performance of the developed tool is evaluated at small-scale level for a manually curated metabolic model, and at genome-scale level for three metabolic models related to Homo sapiens and Saccharomyces cerevisiae organisms. By exploiting these models as benchmarks, the proposed tool shown its ability to reproduce the original GPR rules with a high level of accuracy. In all the tested scenarios, after a manual investigation of the mismatches between the rules proposed by GPRuler and the original ones, the proposed approach revealed to be in many cases more accurate than the original models. By complementing existing tools for metabolic network reconstruction with the possibility to reconstruct GPRs quickly and with a few resources, GPRuler paves the way to the study of context-specific metabolic networks, representing the active portion of the complete network in given conditions, for organisms of industrial or biomedical interest that have not been characterized metabolically yet.
Project description:Systemic approaches to the study of a biological cell or tissue rely increasingly on the use of context-specific metabolic network models. The reconstruction of such a model from high-throughput data can routinely involve large numbers of tests under different conditions and extensive parameter tuning, which calls for fast algorithms. We present fastcore, a generic algorithm for reconstructing context-specific metabolic network models from global genome-wide metabolic network models such as Recon X. fastcore takes as input a core set of reactions that are known to be active in the context of interest (e.g., cell or tissue), and it searches for a flux consistent subnetwork of the global network that contains all reactions from the core set and a minimal set of additional reactions. Our key observation is that a minimal consistent reconstruction can be defined via a set of sparse modes of the global network, and fastcore iteratively computes such a set via a series of linear programs. Experiments on liver data demonstrate speedups of several orders of magnitude, and significantly more compact reconstructions, over a rival method. Given its simplicity and its excellent performance, fastcore can form the backbone of many future metabolic network reconstruction algorithms.
Project description:Diverse algorithms can integrate transcriptomics with genome-scale metabolic models (GEMs) to build context-specific metabolic models. These algorithms require identification of a list of high confidence (core) reactions from transcriptomics, but parameters related to identification of core reactions, such as thresholding of expression profiles, can significantly change model content. Importantly, current thresholding approaches are burdened with setting singular arbitrary thresholds for all genes; thus, resulting in removal of enzymes needed in small amounts and even many housekeeping genes. Here, we describe StanDep, a novel heuristic method for using transcriptomics to identify core reactions prior to building context-specific metabolic models. StanDep clusters gene expression data based on their expression pattern across different contexts and determines thresholds for each cluster using data-dependent statistics, specifically standard deviation and mean. To demonstrate the use of StanDep, we built hundreds of models for the NCI-60 cancer cell lines. These models successfully increased the inclusion of housekeeping reactions, which are often lost in models built using standard thresholding approaches. Further, StanDep also provided a transcriptomic explanation for inclusion of lowly expressed reactions that were otherwise only supported by model extraction methods. Our study also provides novel insights into how cells may deal with context-specific and ubiquitous functions. StanDep, as a MATLAB toolbox, is available at https://github.com/LewisLabUCSD/StanDep.
Project description:Studies about the metabolic alterations during tumorigenesis have increased our knowledge of the underlying mechanisms and consequences, which are important for diagnostic and therapeutic investigations. In this scenario and in the era of systems biology, metabolic networks have become a powerful tool to unravel the complexity of the cancer metabolic machinery and the heterogeneity of this disease. Here, we present TumorMet, a repository of tumor metabolic networks extracted from context-specific Genome-Scale Metabolic Models, as a benchmark for graph machine learning algorithms and network analyses. This repository has an extended scope for use in graph classification, clustering, community detection, and graph embedding studies. Along with the data, we developed and provided Met2Graph, an R package for creating three different types of metabolic graphs, depending on the desired nodes and edges: Metabolites-, Enzymes-, and Reactions-based graphs. This package allows the easy generation of datasets for downstream analysis.
Project description:Drought perturbs metabolism in plants and limits their growth. Because drought stress on crops affects their yields, understanding the complex adaptation mechanisms evolved by plants against drought will facilitate the development of drought-tolerant crops for agricultural use. In this study, we examined the metabolic pathways of Arabidopsis thaliana which respond to drought stress by omics-based in silico analyses. We proposed an analysis pipeline to understand metabolism under specific conditions based on a genome-scale metabolic model (GEM). Context-specific GEMs under drought and well-watered control conditions were reconstructed using transcriptome data and examined using metabolome data. The metabolic fluxes throughout the metabolic network were estimated by flux balance analysis using the context-specific GEMs. We used in silico methods to identify an important reaction contributing to biomass production and clarified metabolic reaction responses under drought stress by comparative analysis between drought and control conditions. This proposed pipeline can be applied in other studies to understand metabolic changes under specific conditions using Arabidopsis GEM or other available plant GEMs.
Project description:Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of metabolic patterns to discover biomarkers of all cancers, we benchmarked thousands of context-specific models using well-established algorithms for the integration of omics data into the generic human metabolic model Recon3D. By analyzing the active reactions capable of carrying flux and their magnitude through flux balance analysis, we proved that the metabolic pattern of each cancer is unique and could act as a cancer metabolic fingerprint. Subsequently, we searched for proper feature selection methods to cluster the flux states characterizing each cancer. We employed PCA-based dimensionality reduction and a random forest learning algorithm to reveal reactions containing the most relevant information in order to effectively identify the most influential fluxes. Conclusively, we discovered different pathways that are probably the main sources for metabolic heterogeneity in cancers. We designed the GEMbench website to interactively present the data, methods, and analysis results.
Project description:Genome-scale metabolic models provide a valuable context for analyzing data from diverse high-throughput experimental techniques. Models can quantify the activities of diverse pathways and cellular functions. Since some metabolic reactions are only catalyzed in specific environments, several algorithms exist that build context-specific models. However, these methods make differing assumptions that influence the content and associated predictive capacity of resulting models, such that model content varies more due to methods used than cell types. Here we overcome this problem with a novel framework for inferring the metabolic functions of a cell before model construction. For this, we curated a list of metabolic tasks and developed a framework to infer the activity of these functionalities from transcriptomic data. We protected the data-inferred tasks during the implementation of diverse context-specific model extraction algorithms for 44 cancer cell lines. We show that the protection of data-inferred metabolic tasks decreases the variability of models across extraction methods. Furthermore, resulting models better capture the actual biological variability across cell lines. This study highlights the potential of using biological knowledge, inferred from omics data, to obtain a better consensus between existing extraction algorithms. It further provides guidelines for the development of the next-generation of data contextualization methods.
Project description:BackgroundCodon pair usage (codon context) is a species specific gene primary structure feature whose evolutionary and functional roles are poorly understood. The data available show that codon-context has direct impact on both translation accuracy and efficiency, but one does not yet understand how it affects these two translation variables or whether context biases shape gene evolution.Methodologies/principal findingsHere we study codon-context biases using a set of 72 orthologous highly conserved genes from bacteria, archaea, fungi and high eukaryotes to identify 7 distinct groups of codon context rules. We show that synonymous mutations, i.e., neutral mutations that occur in synonymous codons of codon-pairs, are selected to maintain context biases and that non-synonymous mutations, i.e., non-neutral mutations that alter protein amino acid sequences, are also under selective pressure to preserve codon-context biases.ConclusionsSince in vivo studies provide evidence for a role of codon context on decoding fidelity in E. coli and for decoding efficiency in mammalian cells, our data support the hypothesis that, like codon usage, codon context modulates the evolution of gene primary structure and fine tunes the structure of open reading frames for high genome translational fidelity and efficiency in the 3 domains of life.
Project description:SummaryPlants and microbes produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have yet to be elucidated. Some biosynthetic pathways are encoded by enzymes collocated in the chromosome. To facilitate a more comprehensive condition and tissue-specific expression analysis of metabolic gene clusters, we developed METACLUSTER, a probabilistic framework for characterizing metabolic gene clusters using context-specific gene expression information.Availability and implementationMETACLUSTER is freely available at https://github.com/mbanf/METACLUSTER.Supplementary informationSupplementary data are available at Bioinformatics online.
Project description:Constraint-based (CB) metabolic models provide a mathematical framework and scaffold for in silico cell metabolism analysis and manipulation. In the past decade, significant efforts have been done to model human metabolism, enabled by the increased availability of multi-omics datasets and curated genome-scale reconstructions, as well as the development of several algorithms for context-specific model (CSM) reconstruction. Although CSM reconstruction has revealed insights on the deregulated metabolism of several pathologies, the process of reconstructing representative models of human tissues still lacks benchmarks and appropriate integrated software frameworks, since many tools required for this process are still disperse across various software platforms, some of which are proprietary. In this work, we address this challenge by assembling a scalable CSM reconstruction pipeline capable of integrating transcriptomics data in CB models. We combined omics preprocessing methods inspired by previous efforts with in-house implementations of existing CSM algorithms and new model refinement and validation routines, all implemented in the Troppo Python-based open-source framework. The pipeline was validated with multi-omics datasets from the Cancer Cell Line Encyclopedia (CCLE), also including reference fluxomics measurements for the MCF7 cell line. We reconstructed over 6000 models based on the Human-GEM template model for 733 cell lines featured in the CCLE, using MCF7 models as reference to find the best parameter combinations. These reference models outperform earlier studies using the same template by comparing gene essentiality and fluxomics experiments. We also analysed the heterogeneity of breast cancer cell lines, identifying key changes in metabolism related to cancer aggressiveness. Despite the many challenges in CB modelling, we demonstrate using our pipeline that combining transcriptomics data in metabolic models can be used to investigate key metabolic shifts. Significant limitations were found on these models ability for reliable quantitative flux prediction, thus motivating further work in genome-wide phenotype prediction.