Unknown

Dataset Information

0

Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing.


ABSTRACT: In this study, we report a flexible implantable 4-channel microelectrode probe coated with highly porous and robust nanocomposite of poly (3,4-ethylenedioxythiophene) (PEDOT) and carbon nanofiber (CNF) as a solid doping template for high-performance in vivo neuronal recording and stimulation. A simple yet well-controlled deposition strategy was developed via in situ electrochemical polymerization technique to create a porous network of PEDOT and CNFs on a flexible 4-channel gold microelectrode probe. Different morphological and electrochemical characterizations showed that they exhibit remarkable and superior electrochemical properties, yielding microelectrodes combining high surface area, low impedance (16.8 ± 2 MΩ µm2 at 1 kHz) and elevated charge injection capabilities (7.6 ± 1.3 mC/cm2) that exceed those of pure and composite PEDOT layers. In addition, the PEDOT-CNF composite electrode exhibited extended biphasic charge cycle endurance and excellent performance under accelerated lifetime testing, resulting in a negligible physical delamination and/or degradation for long periods of electrical stimulation. In vitro testing on mouse brain slices showed that they can record spontaneous oscillatory field potentials as well as single-unit action potentials and allow to safely deliver electrical stimulation for evoking field potentials. The combined superior electrical properties, durability and 3D microstructure topology of the PEDOT-CNF composite electrodes demonstrate outstanding potential for developing future neural surface interfacing applications.

SUBMITTER: Vajrala VS 

PROVIDER: S-EPMC8662776 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5466371 | biostudies-literature
| S-EPMC10866994 | biostudies-literature
| S-EPMC5938739 | biostudies-other
| S-EPMC8072048 | biostudies-literature
| S-EPMC6097987 | biostudies-literature
| S-EPMC9174211 | biostudies-literature
| S-EPMC3686779 | biostudies-literature
| S-EPMC8234856 | biostudies-literature
| S-EPMC5374445 | biostudies-literature
| S-EPMC8251878 | biostudies-literature