Unknown

Dataset Information

0

Oxygen atom transfer promoted nitrate to nitric oxide transformation: a step-wise reduction of nitrate → nitrite → nitric oxide.


ABSTRACT: Nitrate reductases (NRs) are molybdoenzymes that reduce nitrate (NO3 -) to nitrite (NO2 -) in both mammals and plants. In mammals, the salival microbes take part in the generation of the NO2 - from NO3 -, which further produces nitric oxide (NO) either in acid-induced NO2 - reduction or in the presence of nitrite reductases (NiRs). Here, we report a new approach of VCl3 (V3+ ion source) induced step-wise reduction of NO3 - in a CoII-nitrato complex, [(12-TMC)CoII(NO3 -)]+ (2,{CoII-NO3 -}), to a CoIII-nitrosyl complex, [(12-TMC)CoIII(NO)]2+ (4,{CoNO}8), bearing an N-tetramethylated cyclam (TMC) ligand. The VCl3 inspired reduction of NO3 - to NO is believed to occur in two consecutive oxygen atom transfer (OAT) reactions, i.e., OAT-1 = NO3 - → NO2 - (r1) and OAT-2 = NO2 - → NO (r2). In these OAT reactions, VCl3 functions as an O-atom abstracting species, and the reaction of 2 with VCl3 produces a CoIII-nitrosyl ({CoNO}8) with VV-Oxo ({VV[double bond, length as m-dash]O}3+) species, via a proposed CoII-nitrito (3, {CoII-NO2 -}) intermediate species. Further, in a separate experiment, we explored the reaction of isolated complex 3 with VCl3, which showed the generation of 4 with VV-Oxo, validating our proposed reaction sequences of OAT reactions. We ensured and characterized 3 using VCl3 as a limiting reagent, as the second-order rate constant of OAT-2 (k 2 /) is found to be ∼1420 times faster than that of the OAT-1 (k 2) reaction. Binding constant (K b) calculations also support our proposition of NO3 - to NO transformation in two successive OAT reactions, as K b(CoII-NO2 -) is higher than K b(CoII-NO3 -), hence the reaction moves in the forward direction (OAT-1). However, K b(CoII-NO2 -) is comparable to K b{CoNO}8 , and therefore sequenced the second OAT reaction (OAT-2). Mechanistic investigations of these reactions using 15N-labeled-15NO3 - and 15NO2 - revealed that the N-atom in the {CoNO}8 is derived from NO3 - ligand. This work highlights the first-ever report of VCl3 induced step-wise NO3 - reduction (NRs activity) followed by the OAT induced NO2 - reduction and then the generation of Co-nitrosyl species {CoNO}8.

SUBMITTER: Kulbir 

PROVIDER: S-EPMC8666158 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4351918 | biostudies-literature
| S-EPMC5701242 | biostudies-literature
| S-EPMC1218392 | biostudies-other
| S-EPMC8197405 | biostudies-literature
| S-EPMC3365358 | biostudies-literature
| S-EPMC3507325 | biostudies-literature
| S-EPMC3410747 | biostudies-literature
| S-EPMC5066396 | biostudies-literature
2021-09-01 | GSE173102 | GEO
| S-EPMC4031290 | biostudies-literature