Project description:BACKGROUND:Neurofibromatosis type 1 (NF1) is a common, autosomal dominant tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Cephalometry is an inexpensive, readily available and non-invasive technique that is under-utilized in studying the NF1 craniofacial phenotype. An analysis of NF1 cephalometry was first published by Heervä et al. in 2011. We expand here on that first investigation with a larger cohort of adult and pediatric patients affected with NF1 and sought objective insight into the NF1 facies, said to feature hypertelorism and a broad nasal base, from cephalometric analysis. METHODS:We obtained cephalograms from 101 patients with NF1 (78 adults and 23 children) from two NF1 protocols at the National Institutes of Health. Each subject had an age-, gender- and ethnicity-matched control. We used Dolphin software to make the cephalometric measurements. We assessed the normality of differences between paired samples using the Shapiro-Wilk test and evaluated the significance of mean differences using paired t-tests and adjusted for multiple testing. We explored the relationship between the cephalometric measurements and height, head circumference and interpupillary distance. RESULTS:In this dataset of American whites with NF1, we confirmed in a modestly larger sample many of the findings found by Heerva et al. in an NF1 Finnish cohort. We found a shorter maxilla, mandible, cranial base, (especially anteriorly, p = 0.0001) and diminished facial height in adults, but not children, with NF1. Only one adult exhibited hypertelorism. CONCLUSIONS:The cephalometric differences in adults arise in part from cranial base shortening and thus result in a shorter face, mid-face hypoplasia, reduced facial projection, smaller jaw, and increased braincase globularity. In addition, we suggest that NF1 sphenoid bone shortening, a common event, is consistent with an intrinsic NF1 bone cell defect, which renders the bone more vulnerable to a random "second hit" in NF1, leading to sphenoid wing dysplasia, a rare event.
Project description:Spontaneous meningoencephalocele (SME) of the sphenoid wing is a rare cause of cerebrospinal fluid (CSF) leakage. Surgical closure of the fistula is usually required. The approach taken depends on the location of the defect and the extension of the meningoencephalocele. The endoscopic transpterygoid approach may be useful. We prospectively analyzed the three cases of SME of the sphenoid wing with lateral sphenoid sinus extension treated endoscopically at Stanford over the last 3 years with regard to imaging findings, operative technique, and operative morbidity. In our three cases, the extent of pterygopalatine fossa (PPF) exposure undertaken, complete in one and partial in two, depended on the defect site. Follow-up ranged from 17 to 25 months. The fistula was completely closed in all three cases. Extant literature reports a 97% rate of successful closure (N = 65 of 67, with a mean follow-up of 25 months) and no major complications. Endoscopic transpterygoid repair is a useful, safe alternative to traditional approaches for repair of SME of the sphenoid wing. Its feasibility depends on the site of the defect, which can be identified by preoperative imaging. Larger PPF exposure and postoperative lumbar drainage of CSF can be useful and have a low risk of morbidity.
Project description:Mutations in NF1 cause neurofibromatosis type I (NF1), a disorder characterized, among other clinical manifestations, by generalized and focal bony lesions. Dystrophic scoliosis and tibial pseudoarthrosis are the most severe skeletal manifestations for which treatment is not satisfactory, emphasizing the dearth of knowledge related to the biology of NF1 in bone cells. Using reporter mice, we report here that the mouse Col2?1-Cre promoter (collagen, type II, alpha 1) is active not only in chondrocytes but also in adult bone marrow osteoprogenitors giving rise to osteoblasts. Based on this finding, we crossed the Col2?1-Cre transgenic and Nf1(flox/flox) mice to determine whether loss of Nf1 in axial and appendicular osteochondroprogenitors recapitulates the skeletal abnormalities of NF1 patients. By microtomographic and X-rays studies, we show that Nf1(Col2)(-/-) mice display progressive scoliosis and kyphosis, tibial bowing and abnormalities in skull and anterior chest wall formation. These defects were accompanied by a low bone mass phenotype, high bone cortical porosity, osteoidosis, increased osteoclastogenesis and decreased osteoblast number, as quantified by histomorphometry and 3D-microtomography. Loss of Nf1 in osteochondroprogenitors also caused severe short stature and intervertebral disc defects. Blockade of the RAS/ERK activation characteristic of Nf1(-/-) osteoprogenitors by lovastatin during embryonic development could attenuate the increased cortical porosity observed in mutant pups. These data and the skeletal similarities between this mouse model and NF1 patients thus suggest that activation of the RAS/ERK pathway by Nf1 loss-of-function in osteochondroprogenitors is responsible for the vertebral and tibia lesions in NF1 patients, and that this molecular signature may represent a good therapeutic target.
Project description:BACKGROUND: Bowing and/or pseudarthrosis of the tibia is a known severe complication of neurofibromatosis type 1 (NF1). Mice with conditionally inactivated neurofibromin (Nf1) in the developing limbs and cranium (Nf1Prx1) show bowing of the tibia caused by decreased bone mineralisation and increased bone vascularisation. However, in contrast to NF1 patients, spontaneous fractures do not occur in Nf1Prx1 mice probably due to the relatively low mechanical load. We studied bone healing in a cortical bone injury model in Nf1Prx1 mice as a model for NF1-associated bone disease. Taking advantage of this experimental model we explore effects of systemically applied lovastatin, a cholesterol-lowering drug, on the Nf1 deficient bone repair. METHODS: Cortical injury was induced bilaterally in the tuberositas tibiae in Nf1Prx1 mutant mice and littermate controls according to a method described previously. Paraffin as well as methacrylate sections were analysed from each animal. We divided 24 sex-matched mutant mice into a lovastatin-treated and an untreated group. The lovastatin-treated mice received 0.15 mg activated lovastatin by daily gavage. The bone repair process was analysed at three consecutive time points post injury, using histological methods, micro computed tomography measurements and in situ hybridisation. At each experimental time point, three lovastatin-treated mutant mice, three untreated mutant mice and three untreated control mice were analysed. The animal group humanely killed on day 14 post injury was expanded to six treated and six untreated mutant mice as well as six control mice. RESULTS: Bone injury repair is a complex process, which requires the concerted effort of numerous cell types. It is initiated by an inflammatory response, which stimulates fibroblasts from the surrounding connective tissue to proliferate and fill in the injury site with a provisional extracellular matrix. In parallel, mesenchymal progenitor cells from the periost are recruited into the injury site to become osteoblasts. In Nf1Prx1 mice bone repair is delayed and characterised by the excessive formation and the persistence of fibro-cartilaginous tissue and impaired extracellular matrix mineralisation. Correspondingly, expression of Runx2 is downregulated. High-dose systemic lovastatin treatment restores Runx2 expression and accelerates new bone formation, thus improving cortical bone repair in Nf1Prx1 tibia. The bone anabolic effects correlate with a reduction of the mitogen activated protein kinase pathway hyper-activation in Nf1-deficient cells. CONCLUSION: Our data suggest the potential usefulness of lovastatin, a drug approved by the US Food and Drug Administration in 1987 for the treatment of hypercholesteraemia, in the treatment of Nf1-related fracture healing abnormalities. The experimental model presented here constitutes a valuable tool for the pre-clinical stage testing of candidate drugs, targeting Nf1-associated bone dysplasia.
Project description:Sphenoid wing meningiomas account for 11-20% of all intracranial meningiomas and have a higher recurrence rate than those at other sites. Recent molecular biological analyses of meningiomas have proposed new subgroups; however, the correlation between genetic background and recurrence in sphenoid wing meningiomas has not yet been fully elucidated. In this study, we evaluated the clinical characteristics, pathological diagnosis, and molecular background of 47 patients with sphenoid wing meningiomas. Variants of NF2, AKT1, KLF4, SMO, POLR2A, PIK3CA, TRAF7, and TERT were determined using Sanger sequencing, and 22q loss was detected using multiplex ligation-dependent probe amplification. Alterations were localized at NF2 in 11 cases, had other genotypes in 17 cases, and were not detected in 12 cases. Interestingly, WHO grade 1 meningiomas with NF2 alteration/22q loss (p = 0.008) and a MIB-1 labeling index > 4 (p = 0.03) were associated with a significantly shorter recurrence-free survival, and multivariate analysis revealed that NF2 alteration/22q loss was associated with recurrence (hazard ratio, 13.1). The duration of recurrence was significantly shorter for meningiomas with NF2 alteration/22q loss (p = 0.0007) even if gross-total resection was achieved. Together, these findings suggest that NF2 alteration/22q loss is associated with recurrence in WHO grade 1 sphenoid wing meningiomas.
Project description:BackgroundSpinal deformities constitute one of the most common types of manifestations of neurofibromatosis type-1 (NF-1), which can lead to either dystrophic or non-dystrophic early-onset scoliosis (EOS). Surgical treatment for EOS with NF-1 is challenging, and the outcomes have rarely been reported. The anterior-posterior procedure is widely used, but posterior-only fusion is theoretically easier and safer to perform. Is it possible that a new surgery that accommodates growth is a better choice? A direct comparison between posterior fusion and growth-friendly surgery in terms of surgical outcomes has not yet been conducted in dystrophic EOS with NF-1 patients.MethodsBaseline information was extracted from the NF-1 database at our institute with approval from the local ethics committee. All enrolled patients were diagnosed with NF-1. Clinical and radiographic data were recorded preoperatively, after the initial surgery, and at the final follow-up. Implant-related, alignment, neurological complication and unplanned revision surgery data were recorded. We compared the outcomes of these two groups in terms of curve correction, growth parameters, complications and unplanned revision surgeries.ResultsThere were eight patients in the PF group and eight patients in the GR group, with a mean follow-up of 51.0 ± 17.5 months. The main curve size was similar (PF 67.38° ± 17.43° versus GR 75.1° ± 26.43°, P = 0.501), and there were no significant differences in the initial surgery correction rate or the rate of correction. However, the patients in the GR group exhibited more T1-S1 growth during the follow-up overall and per year than did those in the PF group. The operative time was significantly longer for the PF group than for the GR group (PF, 4.39 ± 1.38 vs. GR, 3.00 ± 0.42 h; p = 0.008). Significantly fewer segments were involved in the PF group (8.25 ± 3.20) than in the GR group (13.00 ± 1.60).ConclusionFor the initial treatment of dystrophic EOS in patients with NF-1, the GR technique is possibly a more appropriate treatment than is the PF technique in terms of trunk growth. However, the repeated procedures required for GR may be a considerable disadvantage. More studies with direct measurement of pulmonary function must be conducted to determine the effect of GR on pulmonary development. More studies with larger sample sizes and longer follow-up periods are needed to fully assess the treatment strategies.
Project description:Profound hearing loss is a serious complication of neurofibromatosis type 2, a genetic condition associated with bilateral vestibular schwannomas, benign tumors that arise from the eighth cranial nerve. There is no medical treatment for such tumors.We determined the expression pattern of vascular endothelial growth factor (VEGF) and three of its receptors, VEGFR-2, neuropilin-1, and neuropilin-2, in paraffin-embedded samples from 21 vestibular schwannomas associated with neurofibromatosis type 2 and from 22 sporadic schwannomas. Ten consecutive patients with neurofibromatosis type 2 and progressive vestibular schwannomas who were not candidates for standard treatment were treated with bevacizumab, an anti-VEGF monoclonal antibody. An imaging response was defined as a decrease of at least 20% in tumor volume, as compared with baseline. A hearing response was defined as a significant increase in the word-recognition score, as compared with baseline.VEGF was expressed in 100% of vestibular schwannomas and VEGFR-2 in 32% of tumor vessels on immunohistochemical analysis. Before treatment, the median annual volumetric growth rate for 10 index tumors was 62%. After bevacizumab treatment in the 10 patients, tumors shrank in 9 patients, and 6 patients had an imaging response, which was maintained in 4 patients during 11 to 16 months of follow-up. The median best response to treatment was a volumetric reduction of 26%. Three patients were not eligible for a hearing response; of the remaining seven patients, four had a hearing response, two had stable hearing, and one had progressive hearing loss. There were 21 adverse events of grade 1 or 2.VEGF blockade with bevacizumab improved hearing in some, but not all, patients with neurofibromatosis type 2 and was associated with a reduction in the volume of most growing vestibular schwannomas.
Project description:Genetic analysis of Neurofibromatosis type 1 (NF1) may facilitate the identification of patients in early phases of the disease. Here, we present an overview of our diagnostic research spanning the last 11 years, with a focus on the description of 225 NF1 mutations, 126 of which are novel, found in a series of 607 patients (513 unrelated) in Italy. Between 2003 and 2013, 443 unrelated patients were profiled by denaturing high pressure liquid chromatography (DHPLC) analysis of 60 amplicons derived from genomic NF1 DNA and subsequent sequencing of heterozygotic PCR products. In addition, a subset of patients was studied by multiplex ligation-dependent probe amplification (MLPA) to identify any duplications, large deletions or microdeletions present at the locus. Over the last year, 70 unrelated patients were investigated by MLPA and sequencing of 22 amplicons spanning the entire NF1 cDNA. Mutations were found in 70% of the 293 patients studied by DHPLC, thereby fulfilling the NIH criterion for the clinical diagnosis of NF1 (detection rate: 70%); furthermore, 87% of the patients studied by RNA sequencing were genetically characterized. Mutations were also found in 36 of the 159 patients not fulfilling the NIH clinical criteria. We confirmed a higher incidence of intellectual disability in patients harboring microdeletion type 1 and observed a correlation between a mild phenotype and the small deletion c.2970_2972delAAT or the missense alteration in amino acid residue 1809 (p.Arg1809Cys). These data support the use of RNA-based methods for genetic analysis and provide novel information for improving the management of symptoms in oligosymptomatic patients.
Project description:Neurofibromatosis type I (NF1) predisposes patients to various neoplasias, including gastrointestinal stromal tumors (GISTs). Little is known about the risk of developing GISTs for NF1 patients or the clinicopathologic features and prognosis of NF1-GIST.We conducted a multi-detector computed tomography screen for adult NF1 patients between 2003 and 2012. Clinicopathologic data of sporadic GISTs from patients who underwent surgery between 2001 and 2010 were retrospectively collected from 32 hospitals in Japan.CT screening identified 6 GIST patients from the 95 NF1 patients screened, suggesting that the prevalence rate of GISTs was approximately 6.3/100 in NF1 patients. All 6 NF1 patients exhibited hyperplasia of the interstitial cells of Cajal in the adjoining small intestine. NF1-GISTs may account for 1.1-1.3 % of primary sporadic GISTs and present as multiple tumors in the small intestine, with low mitotic activity and no KIT or PDGFRA mutations. The risk of recurrence and mortality is very similar between NF1 and non-NF1 patients after surgical resection of GISTs.NF1 patients may be predisposed to developing small intestinal GISTs, which may appear as multiple GISTs without KIT and PDGFRA mutations. The prognosis of patients with NF1-GISTs is similar to patients with conventional GISTs.
Project description:The narrow therapeutic index and large interpatient variability in sirolimus pharmacokinetics (PK) make therapeutic drug monitoring necessary. Factors responsible for PK variability are not well understood, and published PK studies do not include pediatric patients with neurofibromatosis type 1 (NF1). The objectives of this study were to estimate sirolimus clearance in a cohort of children with NF1 using data collected in a concentration-guided trial, to evaluate the effect of treatment duration on clearance and dose requirements, and to evaluate the association of sirolimus clearance with patient-specific factors, including age, weight, body surface area (BSA), race, and sex.Sirolimus concentration-time data were collected from an ongoing prospective trial in children with NF1. An iterative 2-stage Bayesian method was used for the PK parameter analyses.Data from 44 patients with NF1 were included in the analyses. Mean age was 8.4 years (SD 4.5, range 3-18), and mean weight was 29.8 kg (SD 16.7, range 12-85.8). Mean sirolimus clearance was 11.8 L/h (SD 4.6, range 2.2-24.1), and the mean dose to obtain a target trough concentration of 10-15 ng/mL was 2.0 mg/m administered twice daily (SD 0.72, range 0.77-3.85). A nonlinear relationship between age and clearance was observed. Total body weight and BSA were strong predictors of sirolimus clearance (r = 0.67 and 0.65, respectively).Sirolimus clearance in children with NF1 is comparable with that in pediatric transplant patients. Clearance was most associated with body size parameters (BSA and total body weight) in children with NF1. When normalized for size, an age effect on clearance was observed in the youngest patients, most likely because of the maturational changes in drug absorption and metabolism. A mean dose of 2.0 mg/m twice a day was required for attainment of target trough concentrations of 10-15 ng/mL in children greater than 3 years of age who have NF1. The updated model will allow PK-guided individualized dosing of sirolimus in patients with NF1.