Project description:Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.
Project description:The inclusion of infants in the SARS-CoV-2 vaccine roll-out is important to prevent severe complications of pediatric SARS-CoV-2 infections and to limit transmission and could possibly be implemented via the global pediatric vaccine schedule. However, age-dependent differences in immune function require careful evaluation of novel vaccines in the pediatric population. Toward this goal, we assessed the safety and immunogenicity of two SARS-CoV-2 vaccines. Two groups of 8 infant rhesus macaques (RMs) were immunized intramuscularly at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. Both vaccines elicited high magnitude IgG binding to RBD, N terminus domain, S1, and S2, ACE2 blocking activity, and high neutralizing antibody titers, all peaking at week 6. S-specific memory B cells were detected by week 4 and S-specific T cell responses were dominated by the production of IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. The immune responses for the mRNA-LNP vaccine were of a similar magnitude to those elicited by the Moderna mRNA-1273 vaccine in adults. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines were well-tolerated and highly immunogenic in infant RMs, providing proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity that might decrease the transmission of SARS-CoV-2 and mitigate the ongoing health and socioeconomic impacts of COVID-19.
Project description:BackgroundImmunocompromised patients are at increased risk of severe COVID-19 and impaired vaccine response. In this observational prospective study, we evaluated immunogenicity of the BNT162b2 mRNA vaccine in cohorts of primary or secondary immunocompromised patients.MethodsFive clinical groups of immunocompromised patients [primary immunodeficiency (PID) (n=57), people living with HIV (PLWH) (n=27), secondary immunocompromised patients with a broad variety of underlying rheumatologic (n=23) and homogeneous (multiple sclerosis) neurologic (n=53) conditions and chronic kidney disease (CKD) (n=39)] as well as a healthy control group (n=54) were included. Systemic humoral and cellular immune responses were evaluated by determination of anti-SARS-CoV-2 Spike antibodies using a TrimericS IgG assay (Diasorin) and through quantification of interferon gamma release in response to SARS-CoV-2 antigen with QuantiFERON SARS-CoV-2 assay (Qiagen), respectively. Responses were measured at pre-defined time-points after complete vaccination.ResultsAll healthy controls, PLWH and CKD-patients had detectable antibodies 10 to 14 days (T2) and 3 months (T3) after administration of the second vaccination. In contrast, only 94.5% of the PID, 50.0% of the rheumatologic and 48.0% of neurologic patients developed antibodies at T2 and only 89.1% of the PID, 52.4% of the rheumatologic and 50.0% of neurologic patients developed antibodies at T3. At T3 no significant differences in cellular response between the healthy control group and the PLWH and CKD groups were found, while proportions of reactive subjects were lower in PID and rheumatologic patients and higher in neurologic patients. Humoral and cellular immune responses significantly correlated in the healthy control, PID, PLWH groups for all 3 antigens.ConclusionPatients with acquired or inherited immune disorders may show variable immune responses to vaccination with the BNT162b2 mRNA vaccine against SARS-CoV-2. Whether humoral, cellular or both immune responses are delayed depends on the patient group, therapy and individual risk factors. These data may guide the counselling of patients with immune disorders regarding vaccination of SARS-CoV-2.
Project description:Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir - an orally available inhibitor of the 3-chymotrypsin-like cysteine protease - has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and to mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.
Project description:Cancer patients are at risk for severe coronavirus disease 2019 (COVID-19) outcomes due to impaired immune responses. However, the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is inadequately characterized in this population. We hypothesized that cancer vs non-cancer individuals would mount less robust humoral and/or cellular vaccine-induced immune SARS-CoV-2 responses. Receptor binding domain (RBD) and SARS-CoV-2 spike protein antibody levels and T-cell responses were assessed in immunocompetent individuals with no underlying disorders (n = 479) and immunocompromised individuals (n = 115). All 594 individuals were vaccinated and of varying COVID-19 statuses (i.e., not known to have been infected, previously infected, or "Long-COVID"). Among immunocompromised individuals, 59% (n = 68) had an underlying hematologic malignancy; of those, 46% (n = 31) of individuals received cancer treatment <30 days prior to study blood collection. Ninety-eight percentage (n = 469) of immunocompetent and 81% (n = 93) of immunocompromised individuals had elevated RBD antibody titers (>1,000 U/mL), and of these, 60% (n = 281) and 44% (n = 41), respectively, also had elevated T-cell responses. Composite T-cell responses were higher in individuals previously infected with SARS-CoV-2 or those diagnosed with Long-COVID compared to uninfected individuals. T-cell responses varied between immunocompetent vs carcinoma (n = 12) cohorts (P < 0.01) but not in immunocompetent vs hematologic malignancy cohorts. Most SARS-CoV-2 vaccinated individuals mounted robust cellular and/or humoral responses, though higher immunogenicity was observed among the immunocompetent compared to cancer populations. The study suggests B-cell targeted therapies suppress antibody responses, but not T-cell responses, to SARS-CoV-2 vaccination. Thus, vaccination continues to be an effective way to induce humoral and cellular immune responses as a likely key preventive measure against infection and/or subsequent more severe adverse outcomes.ImportanceThe study was prompted by a desire to better assess the immune status of patients among our cancer host cohort, one of the largest in the New York metropolitan region. Hackensack Meridian Health is the largest healthcare system in New Jersey and cared for more than 75,000 coronavirus disease 2019 patients in its hospitals. The John Theurer Cancer Center sees more than 35,000 new cancer patients a year and performs more than 500 hematopoietic stem cell transplants. As a result, the work was undertaken to assess the effectiveness of vaccination in inducing humoral and cellular responses within this demographic.
Project description:As the COVID-19 pandemic continues, the authorization of vaccines for emergency use has been crucial in slowing down the rate of infection and transmission of the SARS-CoV-2 virus that causes COVID-19. In order to investigate the longitudinal serological responses to SARS-CoV-2 natural infection and vaccination, a large-scale, multi-year serosurveillance program entitled SPARTA (SARS SeroPrevalence and Respiratory Tract Assessment) was initiated at 4 locations in the U.S. The serological assay presented here measuring IgG binding to the SARS-CoV-2 receptor binding domain (RBD) detected antibodies elicited by SARS-CoV-2 infection or vaccination with a 95.5% sensitivity and a 95.9% specificity. We used this assay to screen more than 3100 participants and selected 20 previously infected pre-immune and 32 immunologically naïve participants to analyze their antibody binding to RBD and viral neutralization (VN) responses following vaccination with two doses of either the Pfizer-BioNTech BNT162b2 or the Moderna mRNA-1273 vaccine. Vaccination not only elicited a more robust immune reaction than natural infection, but the level of neutralizing and anti-RBD antibody binding after vaccination is also significantly higher in pre-immune participants compared to immunologically naïve participants (p<0.0033). Furthermore, the administration of the second vaccination did not further increase the neutralizing or binding antibody levels in pre-immune participants (p=0.69). However, ~46% of the immunologically naïve participants required both vaccinations to seroconvert.