Project description:Lightweight, flexibility, and low thickness are urgent requirements for next-generation high-performance electromagnetic interference (EMI) shielding materials for catering to the demand for smart and wearable electronic devices. Although several efforts have focused on constructing porous and flexible conductive films or aerogels, few studies have achieved a balance in terms of density, thickness, flexibility, and EMI shielding effectiveness (SE). Herein, an ultrathin, lightweight, and flexible carbon nanotube (CNT) buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process. The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100 μm. The hybrid buckypaper with an MXene content of 49.4 wt% exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15 μm, which is 105% higher than that of pristine CNT buckypaper. Furthermore, an average specific SE value of 5.7 × 104 dB cm2 g-1 is exhibited in the 5-μm hybrid buckypaper. Thus, this assembly process proves promising for the construction of ultrathin, flexible, and high-performance EMI shielding films for application in electronic devices and wireless communications.
Project description:High-performance electromagnetic interference shielding is becoming vital for the next generation of telecommunication and sensor devices among which portable and wearable applications require highly flexible and lightweight materials having efficient absorption-dominant shielding. Herein, we report on lightweight carbon foam-carbon nanotube/carbon nanofiber nanocomposites that are synthesized in a two-step robust process including a simple carbonization of open-pore structure melamine foams and subsequent growth of carbon nanotubes/nanofibers by chemical vapor deposition. The microstructure of the nanocomposites resembles a 3-dimensional hierarchical network of carbonaceous skeleton surrounded with a tangled web of bamboo-shaped carbon nanotubes and layered graphitic carbon nanofibers. The microstructure of the porous composite enables absorption-dominant (absorbance ∼0.9) electromagnetic interference shielding with an effectiveness of ∼20-30 dB and with an equivalent mass density normalized shielding effectiveness of ∼800-1700 dB cm3 g-1 at the K-band frequency (18-26.5 GHz). Moreover, the hydrophobic nature of the materials grants water-repellency and stability in humid conditions important for reliable operation in outdoor use, whereas the mechanical flexibility and durability with excellent piezoresistive behavior enable strain-responsive tuning of electrical conductivity and electromagnetic interference shielding, adding on further functionalities. The demonstrated nanocomposites are versatile and will contribute to the development of reliable devices not only in telecommunication but also in wearable electronics, aerospace engineering, and robotics among others.
Project description:Lightweight, ultra-flexible, and robust crosslinked transition metal carbide (Ti3C2 MXene) coated polyimide (PI) (C-MXene@PI) porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach. In addition to the hydrophobicity, anti-oxidation and extreme-temperature stability, efficient utilization of the intrinsic conductivity of MXene, the interfacial polarization between MXene and PI, and the micrometer-sized pores of the composite foams are achieved. Consequently, the composites show a satisfactory X-band electromagnetic interference (EMI) shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm-3, leading to an excellent surface-specific SE of 21,317 dB cm2 g-1. Moreover, the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent, rapid reproducible, and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates. Furthermore, the composite foams are well attached on a human body to check their electromechanical sensing performance, demonstrating the sensitive and reliable detection of human motions as wearable sensors. The excellent EMI shielding performance and multifunctionalities, along with the facile and easy-to-scalable manufacturing techniques, imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics, aerospace, and smart devices.
Project description:Global warming has prompted a search for new materials that capture and sink carbon dioxide (CO2). Biochar is a derivative of biomass pyrolysis and a carbon sink mainly used to improve crop production. This work explores the underlying mechanism behind biochar's electric conductivity using a wide range of feedstocks and its combination with a binder (gypsum). This gypsum-biochar composite exhibits decreased density and flexural moduli with increasing biochar content, particularly after 20% w/w. Gypsum-biochar drywall-like composite prototypes display increasing shielding efficiency mostly in the microwave range as a function of biochar content, differing from other conventional metal (copper) and synthetic carbon-based materials. This narrow range of electromagnetic interference (EMI) shielding is attributed to natural alignment (isotropy) of the carbon ultrastructure (e.g., lignin) induced by heat and intrinsic interconnectivity in addition to traditional phenomena such as dissipation of surface currents and polarization in the electric field. These biomass-derived products could be used as sustainable lightweight materials in a future bio-based economy.
Project description:Lightweight materials, such as polymers and composites, are increasingly used in the automotive and aerospace industries. Recently, there has been an increase in the use of these materials, especially in electric vehicles. However, these materials cannot shield sensitive electronics from electromagnetic interference (EMI). The current work investigates the EMI performance of these lightweight materials using an experimental setup based on the ASTM D4935-99 standard and EMI simulation using the ANSYS HFSS. This work studies how metal coating from zinc and aluminum bronze can improve the shielding performance of polymer-based materials, such as polyphenylene sulfide (PPS), polyetheretherketone (PEEK), and polyphthalamide (PPA). Based on the findings of this study, a thin coating (50 μm) of Zn on the surface of PPS and a thin coating of 5 μm and 10 μm of Al-Bronze, respectively, on the surface of PEEK and PPA have indicated an increase in the shielding effectiveness (SE) when subjected to EMI. The shielding effectiveness significantly increased from 7 dB for the uncoated polymer to approximately 40 dB at low frequencies and up to approximately 60 dB at high frequencies for coated polymers. Finally, various approaches are recommended for improving the SE of polymeric materials under the influence of EMI.
Project description:Carbon nanotube/high density polyethylene (CNT/HDPE) foam composites with high electrical conductivity and electromagnetic interference (EMI) shielding performance were developed by means of compression molding plus salt-leaching. The uniform porous structure and interconnected CNT networks throughout the cell backbones endowed the as-prepared foam composites with a significantly lower electrical percolation threshold (0.22 vol%) than that of the solid composites (0.84 vol%). Owing to the multiple reflections and scattering between the cell-matrix interfaces, the foam composites presented a superior specific EMI shielding effectiveness (EMI SE) of 104.3 dB cm3 g-1, 2.2 times higher than that of their solid counterpart. Besides this, the pore sizes of the CNT/HDPE foam composites could be easily tuned by controlling the particle size of the porogen. Also, the electrical conductivity and specific EMI SE increased with an increase in the cell diameter, which was attributed to the formation of a more perfect conductive network in the cell backbones. Our approach provides a novel idea for fabricating new lightweight EMI shielding materials, especially for aircraft and spacecraft applications.
Project description:Rapid development of highly integrated electronic and telecommunication devices has led to urgent demands for electromagnetic interference (EMI) shielding materials that incorporate flame retardancy, and more desirably the early fire detection ability, due to the potential fire hazards caused by heat propagation and thermal failure of the devices during operation. Here, multifunctional flexible films having the main dual functions of high EMI shielding performance and repeatable fire detection ability are fabricated by vacuum filtration of the mixture of MXene and aramid nanofiber (ANF) suspensions. ANFs serve to reinforce MXene films via the formation of hydrogen bonding between the carbonyl groups of ANFs and the hydroxyl groups of MXene. When the ANF content is 20 wt %, the tensile strength of the film is increased from 24.6 MPa for a pure MXene film to 79.5 MPa, and such a composite film (9 μm thickness) exhibits a high EMI shielding effectiveness (SE) value of ∼40 dB and a specific SE (SSE) value of 4361.1 dB/mm. Upon fire exposure, the composite films can trigger the fire detection system within 10 s owing to the thermoelectric property of MXene. The self-extinguishing feature of ANFs ensures the structural integrity of the films during burning, thus allowing for continuous alarm signals. Moreover, the films also exhibit excellent Joule heating and photothermal conversion performances with rapid response and sufficient heating reliability.
Project description:Cotton fiber (CF)-based electroconductive papers were prepared by facile aqueous dispersion and drying processes combined with carbon nanotubes (CNTs) or graphene nanosheets (GNPs). To enhance the electromagnetic interference (EMI) shielding performance of the manufactured nanocomposites, the electroconductive papers were soaked with epoxy resin, which cooperated with the inner sprayed Fe3O4 nanoparticles. The EMI shielding effectiveness of Epoxy/CF-30-Fe3O4-30GNPs reached 33.1 dB, of which over 85.0% is attributed to absorption, which is mainly believed to be caused by the combination of GNPs and Fe3O4 nanoparticles due to their special structures and synergetic effects. Moreover, the infiltration of epoxy between the randomly distributed loose CFs and the multiple reflections inside the interconnected networks could also help to improve the EMI shielding performance of GNP-added samples. The prepared lightweight and stiff Epoxy/CF-30-Fe3O4-30GNP composites have promising applications in civil or military fields.
Project description:Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli. However, their applications are limited by challenges in terms of issues in biocompatibility, custom shape, and self-healing. Herein, a conductive, stretchable, adaptable, self-healing, and biocompatible liquid metal GaInSn/Ni-based composite hydrogel is developed by incorporating a magnetic liquid metal into the hydrogel framework through crosslinking polyvinyl alcohol (PVA) with sodium tetraborate. The excellent stretchability and fast self-healing capability of the PVA/liquid metal hydrogel are derived from its abundant hydrogen binding sites and liquid metal fusion. Significantly, owing to the magnetic constituent, the PVA/liquid metal hydrogel can be guided remotely using an external magnetic field to a specific position to repair the broken wires with no need for manual operation. The composite hydrogel also exhibits sensitive deformation responses and can be used as a strain sensor to monitor various body motions. Additionally, the multifunctional hydrogel displays absorption-dominated electromagnetic interference (EMI) shielding properties. The total shielding performance of the composite hydrogel increases to ~ 62.5 dB from ~ 31.8 dB of the pure PVA hydrogel at the thickness of 3.0 mm. The proposed bioinspired multifunctional magnetic hydrogel demonstrates substantial application potential in the field of intelligent wearable devices.
Project description:With the rapid increase of intelligent communication equipment, electromagnetic pollution is becoming more and more serious, and the research and application of high-performance electromagnetic shielding materials have attracted great attention from the academic and engineering circles. Traditional metal-based electromagnetic shielding materials have high reflection loss, high density, and are difficult to process. Polymer-based materials with carbon materials as fillers have the advantages of flexibility, light weight, corrosion resistance and low processing costs. They have become the most important materials in the field of electromagnetic shielding in recent years. However, the conductivity of conductive polymer materials is not high. Therefore, improving the electromagnetic shielding performance and the proportion of absorption loss under low density conditions have become key issues for polymer-based electromagnetic shielding materials. MWCNT/MCHMs/WPU composites were prepared by a solution mixing method, with 20 wt%, 40 wt%, 60 wt% MWCNTs and 40 wt% MWCNT/10 wt% MCHMs as fillers. By comparing the effects of different MWCNT content and MCHMs on the dielectric properties, electromagnetic shielding properties and mechanical properties of the MWCNT/MCHMs/WPU composites, the relationship between the structure and properties of the composites has been explored. The 0.6 mm WPU/60 wt% MWCNT composite has an electrical conductivity of 95.4 S m-1 and an electromagnetic shielding effectiveness of 40 dB in the X band. Adding 10 wt% MCHMs to the WPU/40 wt% MWCNT composite material can significantly improve the composite. The δ of the material increased from 51.2 S m-1 to 55.4 S m-1, and the SE increased from 30 dB to 33 dB. The research results show that the increase in MWCNT content and MCHMs is beneficial to improving the electrical conductivity and electromagnetic shielding performance of the composite materials.