Mid-Regional Proadrenomedullin (MR-proADM) and Microcirculation in Monitoring Organ Dysfunction of Critical Care Patients With Infection: A Prospective Observational Pilot Study.
Ontology highlight
ABSTRACT: Introduction: Microvascular alterations are involved in the development of organ injury in critical care patients. Mid-regional proadrenomedullin (MR-proADM) may predict organ damage and its evolution. The main objective of this study was to assess the correlation between MR-proADM and microvascular flow index (MFI) in a small cohort of 20 adult critical care patients diagnosed with infection, sepsis, or septic shock. Further objectives were to evaluate the correlation between the clearance of MR-proADM and the variables of microcirculation and between MR-proADM and the Sequential Organ Failure Assessment (SOFA) score. Materials and Methods: This is a prospective observational pilot study. Inclusion criteria: consecutive adult patients admitted to intensive care unit (ICU) for or with infection-related illness. Daily measurement of MR-proADM and calculation of the SOFA score from admission in ICU to day 5. Repeated evaluations of sublingual microcirculation, collection of clinical data, and laboratory tests. Results: Primary outcome: MR-proADM was not significantly correlated to the MFI at admission in ICU. A clearance of MR-proADM of 20% or more in the first 24 h was related to the improvement of the MFIs and MFIt [percentual variation of the MFIs + 12.35 (6.01-14.59)% vs. +2.23 (-4.45-6.01)%, p = 0.005; MFIt +9.09 (4.53-16.26)% vs. -1.43 (-4.36-3.12)%, p = 0.002]. Conclusion: This study did not support a direct correlation of MR-proADM with the MFI at admission in ICU; however, it showed a good correlation between the clearance of MR-proADM, MFI, and other microvascular variables. This study also supported the prognostic value of the marker. Adequately powered studies should be performed to confirm the findings.
SUBMITTER: Domizi R
PROVIDER: S-EPMC8669477 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA