Project description:IntroductionAlpha-gal syndrome (AGS) is characterized by delayed hypersensitivity to non-primate mammalian meat in people having specific immunoglobulin E (sIgE) to the oligosaccharide galactose-alpha-1,3-galactose. AGS has been linked to tick bites from Amblyomma americanum (Aa) in the U.S. A small animal model of meat allergy is needed to study the mechanism of alpha-gal sensitization, the effector phase leading to delayed allergic responses and potential therapeutics to treat AGS.MethodsEight- to ten-weeks old mice with a targeted inactivation of alpha-1,3-galactosyltransferase (AGKO) were injected intradermally with 50 μg of Aa tick salivary gland extract (TSGE) on days 0, 7, 21, 28, 42, and 49. Total IgE and alpha-gal sIgE were quantitated on Day 56 by enzyme-linked immunosorbent assay. Mice were challenged orally with 400 mg of cooked pork kidney homogenate or pork fat. Reaction severity was assessed by measuring a drop in core body temperature and scoring allergic signs.ResultsCompared to control animals, mice treated with TSGE had 190-fold higher total IgE on Day 56 (0.60 ± 0.12 ng/ml vs. 113.2 ± 24.77 ng/ml; p < 0.001). Alpha-gal sIgE was also produced in AGKO mice following TSGE sensitization (undetected vs. 158.4 ± 72.43 pg/ml). Further, sensitized mice displayed moderate clinical allergic signs along with a drop in core body temperature of ≥2°C as an objective measure of a systemic allergic reaction. Interestingly, female mice had higher total IgE responses to TSGE treatment but male mice had larger declines in mean body temperature.ConclusionTSGE-sensitized AGKO mice generate sIgE to alpha-gal and demonstrate characteristic allergic responses to pork fat and pork kidney. In keeping with the AGS responses documented in humans, mice reacted more rapidly to organ meat than to high fat pork challenge. This mouse model establishes the central role of tick bites in the development of AGS and provides a small animal model to mechanistically study mammalian meat allergy.
Project description:BackgroundA syndrome of mammalian meat allergy relating to IgE specific for galactose-α-1,3-galactose (α-Gal) was first reported 10 years ago in the southeastern United States and has been related to bites of the lone star tick (Amblyomma americanum).ObjectiveHere we investigated the epidemiology of the "α-Gal syndrome" in the United States and sought additional evidence for the connection to tick bites.MethodsA survey of allergists was conducted by using a snowball approach. A second tier of the survey included questions about anaphylaxis to imported fire ants (IFAs). History of tick bites and tick-related febrile illness were assessed as part of a case-control study in Virginia. Antibody assays were conducted on sera from subjects reporting allergic reactions to mammalian meat or IFA.ResultsIn North America the α-Gal syndrome is recognized across the Southeast, Midwest, and Atlantic Coast, with many providers in this area managing more than 100 patients each. The distribution of cases generally conformed to the reported range of A americanum, although within this range there was an inverse relationship between α-Gal cases and cases of IFA anaphylaxis that were closely related to the territory of IFA. The connection between tick bites and α-Gal sensitization was further supported by patients' responses to a questionnaire and the results of serologic tests.ConclusionsThe α-Gal syndrome is commonly acquired in adulthood as a consequence of tick bites and has a regional distribution that largely conforms to the territory of the lone star tick. The epidemiology of the syndrome is expected to be dynamic and shifting north because of climate change and ecologic competition from IFA.
Project description:The mammalian carbohydrate galactose-α1,3-galactose (α-Gal) causes a novel form of food allergy, red meat allergy, where patients experience severe allergic reactions several hours after red meat consumption. Here we explored gastric digestion of α-Gal glycoproteins using an in vitro model. Bovine thyroglobulin (BTG), a typical α-Gal carrying glycoprotein, was digested with pepsin. The resulting peptides were characterised by SDS PAGE, immunoblot and ImmunoCAP using sera from 20 red meat allergic patients. During pepsinolysis of BTG, a wide range of peptide bands was observed of which 14 to 17 kDa peptides remained stable throughout the gastric phase. The presence of the α-Gal epitope on the obtained peptides was demonstrated by an anti-α-Gal antibody and IgE from red meat allergic patients. The α-Gal digests were able to inhibit up to 86% of IgE reactivity to BTG. Importantly, basophil activation test demonstrated that the allergenic activity of BTG was retained after digestion in all four tested patients. Mass spectrometry-based peptidomics revealed that these peptides represent mostly internal and C-terminal parts of the protein, where the most potent IgE-binding α-Gal residues were identified at Asn1756, Asn1850 and Asn2231. Thus allergenic α-Gal epitopes are stable to pepsinolysis, reinforcing their role as clinically relevant food allergens.
Project description:Alpha-Gal Syndrome (AGS) is an IgE-mediated delayed-type hypersensitivity reaction to the oligosaccharide galactose-α-1, 3-galactose (α-gal) injected into humans from the lone-star tick (Amblyomma americanum) bite. Indeed, α-gal is discovered in salivary glands of lone-star tick; however, the tick's specific intrinsic factors involved in endogenous α-gal production and presentation to host during hematophagy are poorly understood. This study aimed to investigate the functional role of two tick enzymes, α-D-galactosidase (ADGal) and β-1,4 galactosyltransferases (β-1,4GalT), in endogenous α-gal production, carbohydrate metabolism, and N-glycan profile in lone-star tick. The ADGal enzyme cleaves terminal α-galactose moieties from glycoproteins and glycolipids, whereas β-1,4GalT transfers α-galactose to a β1,4 terminal linkage acceptor sugars-GlcNAc, Glc, and Xyl-in various processes of glycoconjugate synthesis. An RNA interference approach was utilized to silence ADGal and β-1,4GalT in Am. americanum to examine their function in α-gal metabolism in tick and AGS onset. Silencing of ADGal led to the significant downregulation of genes involved in galactose metabolism and transport in Am. americanum. Immunoblot and N-glycan analysis of the Am. americanum salivary glands showed a significant reduction in α-gal levels in silenced tissues. However, there was no significant difference in the level of α-gal in β-1,4GalT-silenced tick salivary glands. A basophil-activation test showed a decrease in the frequency of activated basophil by ADGal-silenced salivary glands. These results provide an insight into the roles of ADGal and β-1,4GalT in α-gal production and presentation in ticks and the probable involvement in the onset of AGS.
Project description:Tick bites have been shown to transmit a novel form of severe food allergy, the galactose-α-1,3-galactose (α-Gal) syndrome (AGS). Cellular responses to α-Gal in patients with AGS have, to date, not been thoroughly scrutinized. Therefore, we investigated T and B cell proliferation, activation, and cytokine profiles in response to tick protein extract (TE) and α-Gal-free TE in patients with AGS and in healthy controls. T and B cells from both patients and controls proliferated in response to TE, but significantly more in patients with AGS. B cell proliferation, but not T cell proliferation, in patients with AGS was reduced by removing α-Gal from the TE. In addition, TE induced a clear Th2 cytokine profile in patients with AGS. Expression of CD23 by B cells correlated only to T cell proliferation. However, both B cell proliferation and CD23 expression were reduced when CD40L and IL-4 were blocked. A large portion of the IgG1 and IgE antibodies binding TE in patients with AGS were directed against the α-Gal epitope. We have, for what we believe to be the first time, investigated T and B cell responses to α-Gal carrying tick proteins in patients with AGS, which will be essential for the understanding of the immune response against an allergenic carbohydrate transmitted by ticks.
Project description:Plants display remarkable developmental and phenotypic plasticity in order to adapt to their environment. It has long been postulated that epigenetics plays a key role in these processes, but with one or two exceptions, solid evidence for the role of epigenetic variation in these processes is lacking. A key impediment to understanding these processes is the lack of information on the extent of epigenetic variation and how it relates to genetic and phenotypic variation in natural population, both over the lifecycle of an individual, and over evolutionary time. Here we show that genetic variants under selection in the north of Sweden appear to drive variation in DNA methylation, which in turn is highly correlated with local climate. Selective sweeps and genetic variants associated with adaptation to the local environment have previously been identified within the Swedish Arabidopsis population. Our finding that they harbour variants responsible for climate associated epigenetic variation strongly supports the role of epigenetic processes in local adaptation. These findings provide a basis for further dissecting the role of epigenetics in local adaptation at the molecular level
Project description:IgE antibodies to gal-α-1,3-gal-β-1,4-GlcNAc (α-gal) can mediate a novel form of delayed anaphylaxis to red meat. Although IgG antibodies to α-gal (anti-α-gal or anti-Gal) are widely expressed in humans, IgE anti-α-gal is not. We explored the relationship between the IgG and IgE responses to both α-gal and the related blood group B antigen. Contradicting previous reports, antibodies to α-gal were found to be significantly less abundant in individuals with blood group B or AB. Importantly, we established a connection between IgE and IgG responses to α-gal: elevated titers of IgG anti-α-gal were found in IgE-positive subjects. In particular, proportionally more IgG1 anti-α-gal was found in IgE-positive subjects against a background of IgG2 production specific for α-gal. Thus, two types of immune response to α-gal epitopes can be distinguished: a 'typical' IgG2 response, presumably in response to gut bacteria, and an 'atypical', Th2-like response leading to IgG1 and IgE in addition to IgG2. These results suggest that IgE to a carbohydrate antigen can be formed (probably as part of a glycoprotein or glycolipid) even against a background of bacterial immune stimulation with essentially the same antigen.
Project description:Alpha-gal syndrome is an unconventional food allergy, characterized by IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal) and not to a food-protein. In this review, we discuss how alpha-gal syndrome reframes our current conception of the mechanisms of pathogenesis of food allergy. The development of alpha-gal IgE is associated with tick bites though the possibility of other parasites promoting sensitization to alpha-gal remains. We review the immune cell populations involved in the sensitization and effector phases of alpha-gal syndrome and describe the current understanding of why allergic responses to ingested alpha-gal can be delayed by several hours. We review the foundation of management in alpha-gal syndrome, namely avoidance, but also discuss the use of antihistamines, mast cell stabilizers, and the emerging role of complementary and alternative therapies, biological products, and oral immunotherapy in the management of this condition. Alpha-gal syndrome influences the safety and tolerability of medications and medical devices containing or derived from mammalian products and impacts quality of life well beyond food choices.
Project description:IgE antibodies against the mammalian oligosaccharide allergen galactose-α-1,3-galactose (αGal) can result in a severe allergic disease known as alpha-gal syndrome (AGS). This syndrome, acquired by tick bites that cause αGal sensitization, leads to allergic reactions after ingestion of non-primate mammalian meat and mammalian-derived products that contain αGal. Allergen-specific immunotherapies for this tickborne allergic syndrome are understudied, as are the immune mechanisms of allergic desensitization that induce clinical tolerance to αGal. Here, we reveal that prophylactic administration of αGal glycoprotein-containing nanoparticles to mice prior to tick protein-induced αGal IgE sensitization blunts the production of Th2 cytokines IL-4, IL-5, and IL-13 in an αGal-dependent manner. Furthermore, these effects correlated with suppressed production of αGal-specific IgE and hypersensitivity reactions, as measured by reduced basophil activation and histamine release and the systemic release of mast cell protease-1 (MCPT-1). Therapeutic administration of two doses of αGal-containing nanoparticles to mice sensitized to αGal had partial efficacy by reducing the Th2 cytokine production, αGal-specific IgE production, and MCPT-1 release without reducing basophil activation or histamine release. These data identify nanoparticles carrying encapsulated αGal glycoprotein as a potential strategy for augmenting αGal-specific immune tolerance and reveal diverse mechanisms by which αGal nanoparticles modify immune responses for established αGal-specific IgE-mediated allergic reactions.