Project description:Emerging evidence implies that STAT6 plays an important role in both the adaptive and innate immune responses to virus infection. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic ?-herpesvirus agent associated with several human malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphomas (PELs). Previously, we demonstrated that KSHV blocks IL-4-induced STAT6 phosphorylation and retains a basal IL-13/STAT6 constitutive activation for cell survival and proliferation. However, the mechanism by which KSHV regulates STAT6 remains largely unknown. Here, we found that KSHV-encoded LANA interacts with STAT6 and promotes nuclear localization of STAT6 independent of the tyrosine 641-phosphorylation state. Moreover, nuclear localization of STAT6 is also dramatically increased in KS tissue. The latent antigen LANA induces serine protease-mediated cleavage of STAT6 in the nucleus, where the cleaved STAT6 lacking transactivation domain functions as a dominant-negative regulator to repress transcription of Replication and Transcription Activator (RTA) and in turn shut off viral lytic replication. Blockade of STAT6 by small interference RNA dramatically enhances expression of RTA, and in turn reduces KSHV-infected endothelial cell growth and colony formation. Taken together, these results suggest that nuclear localization and cleavage of STAT6 is important for modulating the viral latency and pathogenesis of KSHV.
Project description:Latency-associated nuclear antigen (LANA) is encoded by the Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) open reading frame 73. LANA is expressed during latent KSHV infection of cells, including tumor cells, such as primary effusion lymphoma, KS and multicentric Castleman's disease. Latently infected cells have multiple extrachromosomal copies of covalently closed circular KSHV genomes (episomes) that are stably maintained in proliferating cells. LANA's best characterized function is that of mediating episome persistence. It does so by binding terminal repeat sequences to the chromosomal matrix, thus ensuring episome replication with each cell division and efficient DNA segregation to daughter nuclei after mitosis. To achieve these functions, LANA associates with different host cell proteins, including chromatin-associated proteins and proteins involved in DNA replication. In addition to episome maintenance, LANA has transcriptional regulatory effects and affects cell growth. LANA exerts these functions through interactions with different cell proteins.
Project description:Kaposi's sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is the likely etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Common to these malignancies is that tumor cells are latently infected with KSHV. Viral gene expression is limited to a few genes, one of which is the latency-associated nuclear antigen (LANA), the product of ORF73. Examination of the primary sequence of LANA reveals some structural features reminiscent of transcription factors, leading us to hypothesize that LANA may regulate viral and cellular transcription during latency. In reporter gene-based transient transfection assays, we found that LANA can have either positive or negative effects on gene expression. While expression of a reporter gene from several synthetic promoters was increased in the presence of LANA, expression from the human immunodeficiency virus (HIV) long terminal repeat (LTR)-and from NF-kappaB-dependent reporter genes-was reduced by LANA expression. In addition, the promoter of KSHV ORF73 itself is activated up to 5.5-fold by LANA. This autoregulation may be important in tumorigenesis, because two other genes (v-cyclin and v-FLIP) with likely roles in cell growth and survival are also controlled by this element. To identify cellular genes influenced by LANA, we employed cDNA array-based expression profiling. Six known genes (and nine expressed sequence tags) were found to be upregulated in LANA-expressing cell lines. One of these, Staf-50, is known to inhibit expression from the HIV LTR; most of the other known genes are interferon inducible, although the interferon genes themselves were not induced by LANA. These data demonstrate that LANA expression has effects on cellular and viral gene expression. We suggest that, whether direct or indirect in origin, these effects may play important roles in the pathobiology of KSHV infection.
Project description:The latency-associated nuclear antigen (LANA) is central to the maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) and to the survival of KSHV-carrying tumor cells. In an effort to identify interaction partners of LANA, we purified authentic high-molecular-weight complexes of LANA by conventional chromatography followed by immunoprecipitation from the BC-3 cell line. This is the first analysis of LANA-interacting partners that is not based on forced ectopic expression of LANA. Subsequent tandem mass spectrometry (MS/MS) analysis identified many of the known LANA-interacting proteins. We confirmed LANA's interactions with histones. Three classes of proteins survived our stringent four-step purification procedure (size, heparin, anion, and immunoaffinity chromatography): two heat shock proteins (Hsp70 and Hsp96 precursor), signal recognition particle 72 (SRP72), and 10 different ribosomal proteins. These proteins are likely involved in structural interactions within LANA high-molecular-weight complexes. Here, we show that ribosomal protein S6 (RPS6) interacts with LANA. This interaction is mediated by the N-terminal domain of LANA and does not require DNA or RNA. Depletion of RPS6 from primary effusion lymphoma (PEL) cells dramatically decreases the half-life of full-length LANA. The fact that RPS6 has a well-established nuclear function beyond its role in ribosome assembly suggests that RPS6 (and by extension other ribosomal proteins) contributes to the extraordinary stability of LANA.
Project description:Primary effusion lymphoma (PEL) is an aggressive B cell lymphoma that is etiologically linked to Kaposi's sarcoma-associated herpesvirus (KSHV). Despite standard multi-chemotherapy treatment, PEL continues to cause high mortality. Thus, new strategies to control PEL are needed urgently. Here, we show that a phosphodegron motif within the KSHV protein, latency-associated nuclear antigen (LANA), specifically interacts with E3 ubiquitin ligase FBW7, thereby competitively inhibiting the binding of the anti-apoptotic protein MCL-1 to FBW7. Consequently, LANA-FBW7 interaction enhances the stability of MCL-1 by preventing its proteasome-mediated degradation, which inhibits caspase-3-mediated apoptosis in PEL cells. Importantly, MCL-1 inhibitors markedly suppress colony formation on soft agar and tumor growth of KSHV+PEL/BCBL-1 in a xenograft mouse model. These results strongly support the conclusion that high levels of MCL-1 expression enable the oncogenesis of PEL cells and thus, MCL-1 could be a potential drug target for KSHV-associated PEL. This work also unravels a mechanism by which an oncogenic virus perturbs a key component of the ubiquitination pathway to induce tumorigenesis.
Project description:UnlabelledKaposi's sarcoma-associated herpesvirus (KSHV) typically displays two different phases in its life cycle, the default latent phase and the lytic phase. There is a short period of lytic gene expression in the early stage of KSHV primary infection. The factors involved in the shutdown process of lytic gene expression are poorly identified. It has been shown that the latency-associated nuclear antigen (LANA) encoded by KSHV plays an important role in the establishment of viral latency. In screening, we identified a host protein, Krüppel-associated box domain-associated protein 1 (KAP1), that bound to LANA. We validated the interaction between LANA and KAP1 in vivo and in vitro, as well as their colocalization in the nucleus. We mapped out that LANA interacted with both the N- and C-terminal domains of KAP1. Based on the interface of LANA-KAP1 interaction determined, we proved that LANA recruited KAP1 to the RTA promoter region of the KSHV genome. We revealed that KAP1 was involved in transcriptional repression by LANA. We found multiple cooccupation sites of LANA and KAP1 on the whole KSHV genome by chromatin immunoprecipitation for sequencing (ChIP-seq) and demonstrated that LANA-recruited KAP1 played a critical role in the shutdown of lytic gene expression during the early stage of KSHV primary infection. Taken together, our data suggest that LANA interacts with KAP1 and represses lytic gene expression to facilitate the establishment of KSHV latency.ImportanceOur study revealed the mechanism of transcriptional repression by LANA during KSHV primary infection, providing new insights into the process of KSHV latency establishment.
Project description:Kaposi's sarcoma-associated herpesvirus (KSHV) establishes sustained latent persistence in susceptible cells. This is dependent on the latency-associated nuclear antigen (LANA). Understanding how LANA transcription is regulated thus aids our fundamental understanding of KSHV biology. Two hundred ninety-four base pairs are sufficient to regulate LANA transcription in response to the viral RTA protein and RBPj?. The same region controls K14/viral G-protein-coupled receptor (vGPCR) transcription in the opposite direction. We used a quantitative analysis in conjunction with specific nucleotide substitutions and defined gain-of-function and loss-of-function RTA mutants to dissect this region. We used a bidirectional reporter driving red and green luciferase to study the LANApi and K14p promoters simultaneously. This established that LANApi/K14p functions as a canonical bidirectional promoter. Both were TATA dependent. K14p was favored by ?50-fold in this context. Eliminating the distal LANApi TATA box increased maximal output and lowered the induction threshold (T) of K14p even further. Two RBPj? binding sites were independently required; however, at high concentrations of RTA, direct interactions with an RTA-responsive element (RRE) could complement the loss of one RBPj? binding site. Intracellular Notch (ICN) was no longer able to activate RBPj? in the viral context. This suggests a model whereby KSHV alters ICN-RBPj? gene regulation. When the architecture of this pair of head-to-head RBPj? binding sites is changed, the sites now respond exclusively to the viral transactivator RTA and no longer to the host mediator ICN.
Project description:Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of three human malignancies, the endothelial cell cancer Kaposi's sarcoma, and two B cell cancers, Primary Effusion Lymphoma and multicentric Castleman's disease. KSHV has latent and lytic phases of the viral life cycle, and while both contribute to viral pathogenesis, lytic proteins contribute to KSHV-mediated oncogenesis. Reactivation from latency is driven by the KSHV lytic gene transactivator RTA, and RTA transcription is controlled by epigenetic modifications. To identify host chromatin-modifying proteins that are involved in the latent to lytic transition, we screened a panel of inhibitors that target epigenetic regulatory proteins for their ability to stimulate KSHV reactivation. We found several novel regulators of viral reactivation: an inhibitor of Bmi1, PTC-209, two additional histone deacetylase inhibitors, Romidepsin and Panobinostat, and the bromodomain inhibitor (+)-JQ1. All of these compounds stimulate lytic gene expression, viral genome replication, and release of infectious virions. Treatment with Romidepsin, Panobinostat, and PTC-209 induces histone modifications at the RTA promoter, and results in nucleosome depletion at this locus. Finally, silencing Bmi1 induces KSHV reactivation, indicating that Bmi1, a member of the Polycomb repressive complex 1, is critical for maintaining KSHV latency.
Project description:Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.
Project description:Deregulation of the evolutionarily conserved Notch signaling is highly correlated with oncogenesis. Intracellular activated Notch (ICN) is a protooncogene linked to the transcription activation of a number of cellular genes involved in cell cycle regulation, differentiation, and proliferation. Stability of ICN is tightly regulated by the Sel10-mediated ubiquitin-proteasome pathway. Sel10 can function as a negative regulator of Notch and exhibits activities of a tumor-suppressor protein. This article shows that the Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) directly interacts with Sel10 and forms a complex in KSHV-infected cells. This results in suppression of ICN ubiquitination and degradation. The carboxyl terminus of LANA interacts with the F-box and WD40 domains of Sel10 and competes with ICN for binding to Sel10. This elevated level of ICN is also critical for maintaining the enhanced proliferation of KSHV-infected tumor cells. These findings describe a mechanism by which the KSHV-encoded LANA protein regulates ubiquitination of ICN mediated by the F-box component of the E3 ligase Sel10, leading to proliferation of the virus-infected cells.