Project description:Genome-wide association studies of neurological diseases have identified thousands of variants associated with disease phenotypes. However, most of these variants do not alter coding sequences, making it difficult to assign their function. Here, we present a multi-omic epigenetic atlas of the adult human brain through profiling of single-cell chromatin accessibility landscapes and three-dimensional chromatin interactions of diverse adult brain regions across a cohort of cognitively healthy individuals. We developed a machine-learning classifier to integrate this multi-omic framework and predict dozens of functional SNPs for Alzheimer's and Parkinson's diseases, nominating target genes and cell types for previously orphaned loci from genome-wide association studies. Moreover, we dissected the complex inverted haplotype of the MAPT (encoding tau) Parkinson's disease risk locus, identifying putative ectopic regulatory interactions in neurons that may mediate this disease association. This work expands understanding of inherited variation and provides a roadmap for the epigenomic dissection of causal regulatory variation in disease.
Project description:Tau misprocessing to form aggregates and other toxic species has emerged as a major feature in our developing understanding of the etiology and pathogenesis of Alzheimer's disease (AD). The significance of tau misprocessing in AD has been further emphasized by recent studies showing that tau can be secreted from neurons via exosomes and may itself be an important agent in the spreading of neurofibrillary lesions within the brain. Tau secretion occurs most readily under disease-associated conditions in cellular models, suggesting that cellular changes responsible for secretion, possibly including tau oligomerization, could play a key role in the propagation of neurofibrillary lesions in neurodegenerative disease. Here we show that overexpression of 4R0N human tau in neuroblastoma cells recruits mitochondrial and axonogenesis-associated proteins relevant to neurodegeneration into the exosomal secretion pathway via distinct mechanisms. The recruitment of mitochondrial proteins appears to be linked to autophagy disruption (exophagy) in multiple neurodegenerative conditions but has few known direct links to AD and tau. By contrast, the involvement of synaptic plasticity and axonogenesis markers is highly specific to both tau and AD and may be relevant to the reactivation of developmental programs involving tau in AD and the recently demonstrated ability of secreted tau to establish tissue distribution gradients in CNS neuropil. We also found a highly significant correlation between genes that are significantly downregulated in multiple forms of AD and proteins that have been recruited to exosomes by tau, which we interpret as strong evidence for the central involvement of tau secretion in AD cytopathogenesis. Our results suggest that multiple cellular mechanisms may link tau secretion to both toxicity and neurofibrillary lesion spreading in AD and other tauopathies.
Project description:In tauopathy conditions, such as Alzheimer's disease (AD), highly soluble and natively unfolded tau polymerizes into an insoluble filament; however, the mechanistic details of this process remain unclear. In the brains of AD patients, only a minor segment of tau forms β-helix-stacked protofilaments, while its flanking regions form disordered fuzzy coats. Here, it is demonstrated that the tau AD nucleation core (tau-AC) sufficiently induced self-aggregation and recruited full-length tau to filaments. Unexpectedly, phospho-mimetic forms of tau-AC (at Ser324 or Ser356) show markedly reduced oligomerization and seeding propensities. Biophysical analysis reveal that the N-terminus of tau-AC facilitates the fibrillization kinetics as a nucleation motif, which becomes sterically shielded through phosphorylation-induced conformational changes in tau-AC. Tau-AC oligomers are efficiently internalized into cells via endocytosis and induced endogenous tau aggregation. In primary hippocampal neurons, tau-AC impaired axon initial segment plasticity upon chronic depolarization and is mislocalized to the somatodendritic compartments. Furthermore, it is observed significantly impaired memory retrieval in mice intrahippocampally injected with tau-AC fibrils, which corresponds to the neuropathological staining and neuronal loss in the brain. These findings identify tau-AC species as a key neuropathological driver in AD, suggesting novel strategies for therapeutic intervention.
Project description:BackgroundTo assess the effects of apolipoprotein E (ApoE) ε4 genotype on amyloid-β (Aβ) and tau burden and their longitudinal changes in Alzheimer's disease (AD) spectrum.MethodsAmong 272 individuals who underwent PET scans (18F-florbetaben for Aβ and 18F-flortaucipir for tau) and ApoE genotyping, 187 individuals completed 2-year follow-up PET scans. After correcting for the partial volume effect, we compared the standardized uptake value ratio (SUVR) for Aβ and tau burden between the ε4+ and ε4- groups. By using a linear mixed-effect model, we measured changes in SUVR in the ApoE ε4+ and ε4- groups.ResultsThe ε4+ group showed greater baseline Aβ burden in the diffuse cortical regions and greater tau burden in the lateral, and medial temporal, cingulate, and insula cortices. Tau accumulation rate was higher in the parietal, occipital, lateral, and medial temporal cortices in the ε4+ group. In Aβ+ individuals, baseline tau burden was greater in the medial temporal cortex, while Aβ burden was conversely greater in the ε4- group. Tau accumulation rate was higher in the ε4+ group in a small region in the lateral temporal cortex. The effect of ApoE ε4 on enhanced tau accumulation persisted even after adjusting for the global cortical Aβ burden.ConclusionsProgressive tau accumulation may be more prominent in ε4 carriers, particularly in the medial and lateral temporal cortices. ApoE ε4 allele has differential effects on the Aβ burden depending on the existing amyloidosis and may enhance vulnerability to progressive tau accumulation in the AD spectrum independent of Aβ.
Project description:Here we use deep sequencing to identify sources of variation in mRNA splicing in the dorsolateral prefrontal cortex (DLPFC) of 450 subjects from two aging cohorts. Hundreds of aberrant pre-mRNA splicing events are reproducibly associated with Alzheimer's disease. We also generate a catalog of splicing quantitative trait loci (sQTL) effects: splicing of 3,006 genes is influenced by genetic variation. We report that altered splicing is the mechanism for the effects of the PICALM, CLU and PTK2B susceptibility alleles. Furthermore, we performed a transcriptome-wide association study and identified 21 genes with significant associations with Alzheimer's disease, many of which are found in known loci, whereas 8 are in novel loci. These results highlight the convergence of old and new genes associated with Alzheimer's disease in autophagy-lysosomal-related pathways. Overall, this study of the transcriptome of the aging brain provides evidence that dysregulation of mRNA splicing is a feature of Alzheimer's disease and is, in some cases, genetically driven.
Project description:Hyperphosphorylation of the neuronal tau protein is a hallmark of neurodegenerative tauopathies such as Alzheimer's disease. A central unanswered question is why tau becomes progressively hyperphosphorylated. Here, we show that tau phosphorylation is governed by interdependence- a mechanistic link between initial site-specific and subsequent multi-site phosphorylation. Systematic assessment of site interdependence identified distinct residues (threonine-50, threonine-69, and threonine-181) as master sites that determine propagation of phosphorylation at multiple epitopes. CRISPR point mutation and expression of human tau in Alzheimer's mice showed that site interdependence governs physiologic and amyloid-associated multi-site phosphorylation and cognitive deficits, respectively. Combined targeting of master sites and p38α, the most central tau kinase linked to interdependence, synergistically ablated hyperphosphorylation. In summary, our work delineates how complex tau phosphorylation arises to inform therapeutic and biomarker design for tauopathies.
Project description:Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer's disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10-20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin 1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.
Project description:BackgroundAlzheimer's disease is characterized by aggregated β-amyloid and tau proteins, but the clinical presentations and patterns of brain atrophy vary substantially. A part of this heterogeneity may be linked to the risk allele APOE ε4. The spread of tau pathology is related to atrophy and cognitive decline, but little data exist on the effects of APOE ε4 on tau. The objective of this preliminary study was therefore to test if tau load and brain structure differ by APOE ε4 in Alzheimer's disease.MethodsSixty-five β-amyloid-positive patients at the prodromal and dementia stages of Alzheimer's disease were enrolled, including APOE ε4-positive (n = 46) and APOE ε4-negative (n = 19) patients. 18F-AV-1451 positron emission tomography was used to measure tau and brain magnetic resonance imaging (MRI) was used to measure cortical thickness.ResultsCompared with their APOE ε4-positive counterparts, APOE ε4-negative patients had greater tau load and reduced cortical thickness, with the most pronounced effects for both in the parietal cortex. Relative to the overall cortical tau load, APOE ε4-positive patients had greater tau load in the entorhinal cortex. APOE ε4-positive patients also had slightly greater cortical β-amyloid load. There was an interaction between APOE ε4 and 18F-AV-1451 on cortical thickness, with greater effects of 18F-AV-1451 on cortical thickness in APOE ε4-negative patients. APOE ε4 and 18F-AV-1451 were independent predictors of cognition, but showed distinct associations with different cognitive tests.ConclusionsAPOE genotype may be associated with differences in pathways in Alzheimer's disease, potentially through differential development and spread of tau, as well as through effects on cognitive outcomes involving non-tau-related mechanisms.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease refractory to all targeted and immune therapies. However, our understanding of PDAC microenvironment especially the metastatic microenvironment is very limited partly due to the inaccessibility to metastatic tumor tissues. Here, we present the single-cell transcriptomic landscape of synchronously resected PDAC primary tumors and matched liver metastases. We perform comparative analysis on both cellular composition and functional phenotype between primary and metastatic tumors. Tumor cells exhibit distinct transcriptomic profile in liver metastasis with clearly defined evolutionary routes from cancer cells in primary tumor. We also identify specific subtypes of stromal and immune cells critical to the formation of the pro-tumor microenvironment in metastatic lesions, including RGS5+ cancer-associated fibroblasts, CCL18+ lipid-associated macrophages, S100A8+ neutrophils and FOXP3+ regulatory T cells. Cellular interactome analysis further reveals that the lack of tumor-immune cell interaction in metastatic tissues contributes to the formation of the immunosuppressive microenvironment. Our study provides a comprehensive characterization of the transcriptional landscape of PDAC liver metastasis.
Project description:Although multiple susceptibility loci for late-onset Alzheimer's disease (LOAD) have been identified, a large portion of the genetic risk for this disease remains unexplained. LOAD risk may be associated with single-nucleotide polymorphisms responsible for changes in gene expression (eSNPs). To detect eSNPs associated with LOAD, we integrated data from LOAD genome-wide association studies and expression quantitative trait loci using Sherlock (a Bayesian statistical method). We identified a cis-regulatory eSNP (rs2927438) located on chromosome 19q13.32, for which subsequent analyses confirmed the association with both LOAD risk and the expression level of several nearby genes. Importantly, rs2927438 may represent an APOE-independent LOAD eSNP according to the weak linkage disequilibrium of rs2927438 with the 2 polymorphisms (rs7412 and rs429358) defining the APOE-ε2, -ε3, and -ε4 alleles. Furthermore, rs2927438 does not influence chromatin interaction events at the APOE locus or cis-regulation of APOE expression. Further exploratory analysis revealed that rs2927438 is significantly associated with tau levels in the cerebrospinal fluid. Our findings suggest that rs2927438 may confer APOE-independent risk for LOAD.