Project description:Neanderthals hunted and butchered straight-tusked elephants, the largest terrestrial mammals of the Pleistocene, in a lake landscape on the North European plain, 125,000 years ago, as recently shown by a study of the Last Interglacial elephant assemblage from Neumark-Nord (Germany). With evidence for a remarkable focus on adult males and on their extended utilization, the data from this location are thus far without parallel in the archaeological record. Given their relevance for our knowledge of the Neanderthal niche, we investigated whether the Neumark-Nord subsistence practices were more than a local phenomenon, possibly determined by local characteristics. Analyzing elephant remains from two other Last Interglacial archaeological sites on the North European plain, Gröbern and Taubach, we identified in both assemblages similar butchering patterns as at Neumark-Nord, demonstrating that extended elephant exploitation was a widespread Neanderthal practice during the (early part of the) Last Interglacial. The substantial efforts needed to process these animals, weighing up to 13 metric tons, and the large amounts of food generated suggest that Neanderthals either had ways of storing vast amounts of meat and fat and/or temporarily aggregated in larger groups than commonly acknowledged. The data do not allow us to rule out one of the two explanations, and furthermore both factors, short-term larger group sizes as well as some form of food preservation, may have played a role. What the data do show is that exploitation of large straight-tusked elephants was a widespread and recurring phenomenon amongst Last Interglacial Neanderthals on the North European plain.
Project description:Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000?m migrated from the western basins at 125?ka to the eastern basins at 115?ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115?ka, as a result of a larger density of AABW formed at 115?ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.
Project description:Climatic oscillations during the Pleistocene played a major role in shaping the spatial distribution and demographic dynamics of Earth's biota, including our own species. The Last Interglacial (LIG) or Eemian Period (ca. 130 to 115 thousand years B.P.) was particularly influential because this period of peak warmth led to the retreat of all ice sheets with concomitant changes in global sea level. The impact of these strong environmental changes on the spatial distribution of marine and terrestrial ecosystems was severe as revealed by fossil data and paleogeographic modeling. Here, we report the occurrence of an extant, inland mangrove ecosystem and demonstrate that it is a relict of the LIG. This ecosystem is currently confined to the banks of the freshwater San Pedro Mártir River in the interior of the Mexico-Guatemala El Petén rainforests, 170 km away from the nearest ocean coast but showing the plant composition and physiognomy typical of a coastal lagoon ecosystem. Integrating genomic, geologic, and floristic data with sea level modeling, we present evidence that this inland ecosystem reached its current location during the LIG and has persisted there in isolation ever since the oceans receded during the Wisconsin glaciation. Our study provides a snapshot of the Pleistocene peak warmth and reveals biotic evidence that sea levels substantially influenced landscapes and species ranges in the tropics during this period.
Project description:The Last Interglacial (LIG; ca. 125,000 y ago) resulted from rapid global warming and reached global mean temperatures exceeding those of today. The LIG thus offers the opportunity to study how life may respond to future global warming. Using global occurrence databases and applying sampling-standardization, we compared reef coral diversity and distributions between the LIG and modern. Latitudinal diversity patterns are characterized by a tropical plateau today but were characterized by a pronounced equatorial trough during the LIG. This trough is governed by substantial range shifts away from the equator. Range shifts affected both leading and trailing edges of species range limits and were much more pronounced in the Northern Hemisphere than south of the equator. We argue that interglacial warming was responsible for the loss of equatorial diversity. Hemispheric differences in insolation during the LIG may explain the asymmetrical response. The equatorial retractions are surprisingly strong given that only small temperature changes have been reported in the LIG tropics. Our results suggest that the poleward range expansions of reef corals occurring with intensified global warming today may soon be followed by equatorial range retractions.
Project description:The last extended time period when climate may have been warmer than today was during the Last Interglacial (LIG; ca. 129 to 120 thousand years ago). However, a global view of LIG precipitation is lacking. Here, seven new LIG climate models are compared to the first global database of proxies for LIG precipitation. In this way, models are assessed in their ability to capture important hydroclimatic processes during a different climate. The models can reproduce the proxy-based positive precipitation anomalies from the preindustrial period over much of the boreal continents. Over the Southern Hemisphere, proxy-model agreement is partial. In models, LIG boreal monsoons have 42% wider area than in the preindustrial and produce 55% more precipitation and 50% more extreme precipitation. Austral monsoons are weaker. The mechanisms behind these changes are consistent with stronger summer radiative forcing over boreal high latitudes and with the associated higher temperatures during the LIG.
Project description:As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ?128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.
Project description:The end of the last interglacial period, ~118 kyr ago, was characterized by substantial ocean circulation and climate perturbations resulting from instabilities of polar ice sheets. These perturbations are crucial for a better understanding of future climate change. The seasonal temperature changes of the tropical ocean, however, which play an important role in seasonal climate extremes such as hurricanes, floods and droughts at the present day, are not well known for this period that led into the last glacial. Here we present a monthly resolved snapshot of reconstructed sea surface temperature in the tropical North Atlantic Ocean for 117.7±0.8 kyr ago, using coral Sr/Ca and ?(18)O records. We find that temperature seasonality was similar to today, which is consistent with the orbital insolation forcing. Our coral and climate model results suggest that temperature seasonality of the tropical surface ocean is controlled mainly by orbital insolation changes during interglacials.
Project description:During the Last Interglacial (LIG; 129-116 thousand years before present), the Antarctic ice sheet (AIS) was 1 to 7 m sea level equivalent smaller than at pre-industrial. Here, we assess the climatic impact of partial AIS melting at the LIG by forcing a coupled climate model with a smaller AIS and the equivalent meltwater input around the Antarctic coast. We find that changes in surface elevation induce surface warming over East Antarctica of 2 to 4 °C, and sea surface temperature (SST) increases in the Weddell and Ross Seas by up to 2 °C. Meltwater forcing causes a high latitude SST decrease and a subsurface (100-500 m) ocean temperature increase by up to 2 °C in the Ross Sea. Our results suggest that the combination of a smaller AIS and enhanced meltwater input leads to a larger sub-surface warming than meltwater alone and induces further Antarctic warming than each perturbation separately.
Project description:Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al., Nat. Clim. Chang. (3), 673-677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al., Philos. Trans. A Math. Phys. Eng. Sci. (371), 20130097 (2013) and Post et al., SciAdv (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic-documented here by multiple proxies-likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.
Project description:Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters.