Subinhibitory Concentrations of Clinically-Relevant Antimicrobials Affect Resistance-Nodulation-Division Family Promoter Activity in Acinetobacter baumannii.
Ontology highlight
ABSTRACT: Efflux pumps contribute to multidrug resistance in Acinetobacter baumannii due to their ability to expel a wide variety of structurally unrelated compounds. This study aimed to characterize the effect of subinhibitory concentrations of clinically-relevant antibiotics and disinfectants on the promoter activity of members of the Resistance-Nodulation-Division (RND) family in A. baumannii. The promoter regions from three RND efflux pumps (AdeABC, AdeFGH and AdeIJK) and the AdeRS regulatory system from three different A. baumannii strains (ATCC 17961, ATCC 17978, and ATCC 19606) were cloned into a luciferase reporter system (pLPV1Z). Promoter activity was quantitatively assessed in both exponential and stationary phase cultures after exposure to subinhibitory concentrations of four antibiotics from different classes (rifampicin, meropenem, tigecycline and colistin) and two disinfectants (ethanol and chlorhexidine). Subinhibitory concentrations of the compounds tested had variable effects on promoter activity that were highly dependent on the A. baumannii strain, the compound tested and the growth phase. Fold changes in AdeABC promoter activity ranged from 1.97 to 113.7, in AdeFGH from -5.6 to 1.13, in AdeIJK from -2.5 to 2, and in AdeRS from -36.2 to -1.32. Taken together, these results indicate that subinhibitory concentrations of clinically-relevant antibiotics and disinfectants affect the promoter activity of RND family members in A. baumannii in a strain and growth phase dependent manner. These results may have important implications for the treatment of infections caused by A. baumannii.
Project description:We have identified a second resistance-nodulation-cell division (RND)-type efflux pump, AdeIJK, in clinical isolate Acinetobacter baumannii BM4454. The adeI, adeJ, and adeK genes encode, respectively, the membrane fusion, RND, and outer membrane components of the pump. AdeJ belongs to the AcrB protein family (57% identity with AcrB from Escherichia coli). mRNA analysis by Northern blotting and reverse transcription-PCR indicated that the genes were cotranscribed. Overexpression of the cloned adeIJK operon was toxic in both E. coli and Acinetobacter. The adeIJK genes were detected in all of the 60 strains of A. baumannii tested. The two latter observations suggest that the AdeIJK complex might contribute to intrinsic but not to acquired antibiotic resistance in Acinetobacter. To characterize the substrate specificity of the pump, we have constructed derivatives of BM4454 in which adeIJK (strain BM4579), adeABC (strain BM4561), or both groups of genes (strain BM4652) were inactivated by deletion-insertion. Determination of the antibiotic susceptibility of these strains and of BM4652 and BM4579, in which the adeIJK operon was provided in trans, indicated that the AdeIJK pump contributes to resistance to beta-lactams, chloramphenicol, tetracycline, erythromycin, lincosamides, fluoroquinolones, fusidic acid, novobiocin, rifampin, trimethoprim, acridine, safranin, pyronine, and sodium dodecyl sulfate. The chemical structure of these molecules suggests that amphiphilic compounds are the preferred substrates. The AdeABC and AdeIJK efflux systems contributed in a more than additive fashion to tigecycline resistance.
Project description:Acinetobacter baumannii is a major nosocomial pathogen which frequently develops multidrug resistance by acquisition of antibiotic resistance genes and overexpression of intrinsic efflux systems, such as the RND efflux pumps AdeABC and AdeIJK. A third RND system was characterized by studying spontaneous mutants BM4663 and BM4664, which were selected in the presence of chloramphenicol and norfloxacin, respectively, from the AdeABC- and AdeIJK-defective derivative A. baumannii BM4652. They exhibited enhanced resistance to fluoroquinolones, tetracycline-tigecycline, chloramphenicol, clindamycin, trimethoprim, sulfamethoxazole, sodium dodecyl sulfate, and dyes such as ethidium bromide, safranin O, and acridine orange. Comparison of transcriptomes of mutants with that of their parental strain, using a microarray technology, demonstrated the overexpression of three genes that encoded an RND efflux system, named AdeFGH. Inactivation of AdeFGH in BM4664 restored an antibiotic susceptibility profile identical to that of BM4652, indicating that AdeFGH was cryptic in BM4652 and responsible for multidrug resistance in its mutants. RNA analysis demonstrated that the three genes were cotranscribed. The adeFGH operon was found in 36 out of 40 A. baumannii clinical isolates, but none of the 22 isolates tested overexpressed the pump genes. Spontaneous MDR mutant BM4684, overexpressing adeFGH, was obtained from clinical isolate BM4587, indicating that adeFGH can be overexpressed in a strain harboring adeABC-adeIJK. An open reading frame, coding a LysR-type transcriptional regulator, named adeL, was located upstream from the adeFGH operon and transcribed in the opposite direction. Mutations in adeL were found in the three adeFGH-overexpressing mutants, suggesting that they were responsible for overexpression of AdeFGH.
Project description:Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster.
Project description:Acinetobacter baumannii is a nosocomial pathogen of increasing importance due to its multiple resistance to antibiotics and ability to survive in the hospital environment linked to its capacity to form biofilms. To fully characterize the contribution of AdeABC, AdeFGH, and AdeIJK resistance-nodulation-cell division (RND)-type efflux systems to acquired and intrinsic resistance, we constructed, from an entirely sequenced susceptible A. baumannii strain, a set of isogenic mutants overexpressing each system following introduction of a point mutation in their cognate regulator or a deletion for the pump by allelic replacement. Pairwise comparison of every derivative with the parental strain indicated that AdeABC and AdeFGH are tightly regulated and contribute to acquisition of antibiotic resistance when overproduced. AdeABC had a broad substrate range, including β-lactams, fluoroquinolones, tetracyclines-tigecycline, macrolides-lincosamides, and chloramphenicol, and conferred clinical resistance to aminoglycosides. Importantly, when combined with enzymatic resistance to carbapenems and aminoglycosides, this pump contributed in a synergistic fashion to the level of resistance of the host. In contrast, AdeIJK was expressed constitutively and was responsible for intrinsic resistance to the same major drug classes as AdeABC as well as antifolates and fusidic acid. Surprisingly, overproduction of AdeABC and AdeIJK altered bacterial membrane composition, resulting in decreased biofilm formation but not motility. Natural transformation and plasmid transfer were diminished in recipients overproducing AdeABC. It thus appears that alteration in the expression of efflux systems leads to multiple changes in the relationship between the host and its environment, in addition to antibiotic resistance. Increased expression of chromosomal genes for RND-type efflux systems plays a major role in bacterial multidrug resistance. Acinetobacter baumannii has recently emerged as an important human pathogen responsible for epidemics of hospital-acquired infections. Besides its remarkable ability to horizontally acquire resistance determinants, it has a broad intrinsic resistance due to low membrane permeability, endogenous resistance genes, and antibiotic efflux. The study of isogenic mutants from a susceptible A. baumannii clinical isolate overproducing or deleted for each of the three major RND-type pumps demonstrated their major contribution to intrinsic resistance and to the synergism between overproduction of an efflux system and acquisition of a resistance gene. We have also shown that modulation of expression of the structural genes for the efflux systems results in numerous alterations in membrane-associated cellular functions, in particular, in a decrease in biofilm formation and resistance gene acquisition.
Project description:Acinetobacter baumannii is emerging as a multidrug-resistant nosocomial pathogen of increasing threat to human health worldwide. Pili are important bacterial virulence factors, playing a role in attachment to host cells and biofilm formation. The Csu pilus, which is assembled via the chaperone-usher secretion system, has been studied in A. baumannii ATCC 19606. Here we show that, in opposition to previous reports, the common laboratory strain ATCC 17978 produces Csu pili. We found that, although ATCC 17978 was resistant to sulfamethoxazole (Smx) and trimethoprim (Tmp), subinhibitory concentrations of these antibiotics abolished the expression of Csu and consequently produced a dramatic reduction in biofilm formation by ATCC 17978. Smx and Tmp acted synergistically to inhibit the enzymatic systems involved in the bacterial synthesis of tetrahydrofolate (THF), which is required for the synthesis of nucleotides. The effects of these antibiotics were partially relieved by exogenous THF addition, indicating that Smx and Tmp turn off Csu assembly by inducing folate stress. We propose that, for Acinetobacter, nanomolar concentrations of Smx and Tmp represent a "danger signal." In response to this signal, Csu expression is repressed, allowing biofilm dispersal and escape from potentially inhibitory concentrations of antibiotics. The roles of antibiotics as signaling molecules are being increasingly acknowledged, with clear implications for both the treatment of bacterial diseases and the understanding of complex microbial interactions in the environment.
Project description:Overexpression of chromosomal resistance-nodulation-cell division (RND)-type efflux systems with broad substrate specificity contributes to multidrug resistance (MDR) in Acinetobacter baumannii We have shown that modulation of expression of the structural genes for the efflux systems AdeABC and AdeIJK confers MDR and results in numerous alterations of membrane-associated cellular functions, in particular biofilm formation. However, the contribution of these RND pumps to cell fitness and virulence has not yet been studied. The biological cost of an antibiotic resistance mechanism is a key parameter in determining its stability and dissemination. From an entirely sequenced susceptible clinical isolate, we have generated a set of isogenic derivatives having single point mutations resulting in overexpression of each efflux system or with every pump deleted by allelic replacement. We found that overproduction of the pumps results in a significant decrease in fitness of the bacterial host when measured by competition experiments in vitro Fitness and virulence were also evaluated in vivo both in systemic and pulmonary infection models in immunocompetent mice. A diminished competitiveness of the AdeABC-overexpressing mutant was observed only after intraperitoneal inoculation, but not after intranasal inoculation, the latter mimicking the most frequent type of human A. baumannii infection. However, in mice infected intranasally, this mutant was more virulent and stimulated an enhanced neutrophil activation in the lungs. Altogether, these data account for the observation that adeABC overexpression is common in MDR A. baumannii frequently found in ventilator-associated pneumonia.Overproduction of the RND AdeABC efflux system is observed with a high incidence in multidrug-resistant Acinetobacter baumannii and results in increased resistance to several antibiotics of choice for the treatment of infections caused by this nosocomial pathogen. It was therefore important to study the biological cost of the overexpression of the adeABC structural operon which is normally tightly regulated. Fitness diminution of an overexpressing mutant detected in vitro and in vivo in a model that mimics sepsis was not observed in a pulmonary infection model in which the mutant was more virulent. This points out that increased virulence can occur independently from prolonged persistence in the infected organ and can account for the elevated incidence of this resistance mechanism in clinical isolates. The study also indicates that transposon libraries will identify only virulence genes that are expressed under physiological conditions but not those that are tightly regulated.
Project description:Biological processes that govern bacterial proliferation and survival in the host-environment(s) are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s). Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in traditional laboratory screening media.
Project description:Genetic alterations leading to the constitutive upregulation of specific efflux pumps contribute to antibacterial resistance in multidrug resistant bacteria. The identification of such resistance markers remains one of the most challenging tasks of genome-level resistance predictors. In this study, 487 non-redundant genetic events were identified in upstream zones of three operons coding for resistance-nodulation-division (RND) efflux pumps of 4,130 Acinetobacter baumannii isolates. These events included insertion sequences, small indels, and single nucleotide polymorphisms. In some cases, alterations explicitly modified the expression motifs described for these operons, such as the promoter boxes, operators, and Shine-Dalgarno sequences. In addition, changes in DNA curvature and mRNA secondary structures, which are structural elements that regulate expression, were also calculated. According to their influence on RND upregulation, the catalog of upstream modifications were associated with "experimentally verified," "presumed," and "probably irrelevant" degrees of certainty. For experimental verification, DNA of upstream sequences independently carrying selected markers, three for each RND operon, were fused to a luciferase reporter plasmid system. Five out of the nine selected markers tested showed significant increases in expression with respect to the wild-type sequence control. In particular, a 25-fold expression increase was observed with the ISAba1 insertion sequence upstream the adeABC pump. Next, overexpression of each of the three multi-specific RND pumps was linked to their respective antibacterial substrates by a deep A. baumannii literature screen. Consequently, a data flow framework was then developed to link genomic upregulatory RND determinants to potential antibiotic resistance. Assignment of potential increases in minimal inhibitory concentrations at the "experimentally verified" level was permitted for 42 isolates to 7-8 unrelated antibacterial agents including tigecycline, which is overlooked by conventional resistome predictors. Thus, our protocol may represent a time-saving filter step prior to laborious confirmation experiments for efflux-driven resistance. Altogether, a computational-experimental pipeline containing all components required for identifying the upstream regulatory resistome is proposed. This schema may provide the foundational stone for the elaboration of tools approaching antibiotic efflux that complement routine resistome predictors for preventing antimicrobial therapy failure against difficult-to-threat bacteria.
Project description:Polymyxins are often last-line therapeutic agents used to treat infections caused by multidrug-resistant A. baumannii. Recent reports of polymyxin-resistant A. baumannii highlight the urgent need for research into mechanisms of polymyxin resistance. This study employed genomic and transcriptomic analyses to investigate the mechanisms of polymyxin resistance in A. baumannii AB307-0294 using an in vitro dynamic model to mimic four different clinically relevant dosage regimens of polymyxin B and colistin over 96?h. Polymyxin B dosage regimens that achieved peak concentrations above 1?mg/L within 1?h caused significant bacterial killing (~5 log10CFU/mL), while the gradual accumulation of colistin resulted in no bacterial killing. Polymyxin resistance was observed across all dosage regimens; partial reversion to susceptibility was observed in 6 of 8 bacterial samples during drug-free passaging. Stable polymyxin-resistant samples contained a mutation in pmrB. The transcriptomes of stable and non-stable polymyxin-resistant samples were not substantially different and featured altered expression of genes associated with outer membrane structure and biogenesis. These findings were further supported via integrated analysis of previously published transcriptomics data from strain ATCC19606. Our results provide a foundation for understanding the mechanisms of polymyxin resistance following exposure to polymyxins and the need to explore effective combination therapies.
Project description:Acinetobacter baumannii is a Gram-negative bacterium primarily associated with hospital-acquired, often multidrug-resistant (MDR) infections. The ribosome-targeting antibiotics amikacin and tigecycline are among the limited arsenal of drugs available for treatment of such infections. We present high-resolution structures of the 70S ribosome from A. baumannii in complex with these antibiotics, as determined by cryoelectron microscopy. Comparison with the ribosomes of other bacteria reveals several unique structural features at functionally important sites, including around the exit of the polypeptide tunnel and the periphery of the subunit interface. The structures also reveal the mode and site of interaction of these drugs with the ribosome. This work paves the way for the design of new inhibitors of translation to address infections caused by MDR A. baumannii.