Unknown

Dataset Information

0

The small-molecule BMH-21 directly inhibits transcription elongation and DNA occupancy of RNA polymerase I in vivo and in vitro.


ABSTRACT: Cancer cells are dependent upon an abundance of ribosomes to maintain rapid cell growth and proliferation. The rate-limiting step of ribosome biogenesis is ribosomal RNA (rRNA) synthesis by RNA polymerase I (Pol I). Therefore, a goal of the cancer therapeutic field is to develop and characterize Pol I inhibitors. Here, we elucidate the mechanism of Pol I inhibition by a first-in-class small-molecule BMH-21. To characterize the effects of BMH-21 on Pol I transcription, we leveraged high-resolution in vitro transcription assays and in vivo native elongating transcript sequencing (NET-seq). We find that Pol I transcription initiation, promoter escape, and elongation are all inhibited by BMH-21 in vitro. In particular, the transcription elongation phase is highly sensitive to BMH-21 treatment, as it causes a decrease in transcription elongation rate and an increase in paused Pols on the ribosomal DNA (rDNA) template. In vivo NET-seq experiments complement these findings by revealing a reduction in Pol I occupancy on the template and an increase in sequence-specific pausing upstream of G-rich rDNA sequences after BMH-21 treatment. Collectively, these data reveal the mechanism of action of BMH-21, which is a critical step forward in the development of this compound and its derivatives for clinical use.

SUBMITTER: Jacobs RQ 

PROVIDER: S-EPMC8683726 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2021-05-26 | GSE175553 | GEO
| S-EPMC9688676 | biostudies-literature
| PRJNA732709 | ENA
| S-EPMC3099699 | biostudies-literature
| S-EPMC4221476 | biostudies-literature
| S-EPMC6016085 | biostudies-literature
| S-EPMC2767109 | biostudies-literature
| S-EPMC7307170 | biostudies-literature
| S-EPMC4294624 | biostudies-literature
| S-EPMC9768379 | biostudies-literature