Ontology highlight
ABSTRACT: Introduction
Gastrointestinal stromal tumor (GIST) is the most common gastrointestinal soft tissue tumor. Clinical diagnosis mainly relies on enhanced CT, endoscopy and endoscopic ultrasound (EUS), but the misdiagnosis rate is still high without fine needle aspiration biopsy. We aim to develop a novel diagnostic model by analyzing the preoperative data of the patients.Methods
We used the data of patients who were initially diagnosed as gastric GIST and underwent partial gastrectomy. The patients were randomly divided into training dataset and test dataset at a ratio of 3 to 1. After pre-experimental screening, max depth = 2, eta = 0.1, gamma = 0.5, and nrounds = 200 were defined as the best parameters, and in this way we developed the initial extreme gradient-boosting (XGBoost) model. Based on the importance of the features in the initial model, we improved the model by excluding the hematological features. In this way we obtained the final XGBoost model and underwent validation using the test dataset.Results
In the initial XGBoost model, we found that the hematological indicators (including inflammation and nutritional indicators) examined before the surgery had little effect on the outcome, so we subsequently excluded the hematological indicators. Similarly, we also screened the features from enhanced CT and ultrasound gastroscopy, and finally determined the 6 most important predictors for GIST diagnosis, including the ratio of long and short diameter under CT, the CT value of the tumor, the enhancement of the tumor in arterial period and venous period, existence of liquid area and calcific area inside the tumor under EUS. Round or round-like tumors with a CT value of around 30 (25-37) and delayed enhancement, as well as liquid but not calcific area inside the tumor best indicate the diagnosis of GIST.Conclusions
We developed a model to further differential diagnose GIST from other tumors in initially clinical diagnosed gastric GIST patients by analyzing the results of clinical examinations that most patients should have completed before surgical resection.
SUBMITTER: Hu B
PROVIDER: S-EPMC8684147 | biostudies-literature |
REPOSITORIES: biostudies-literature