Project description:Various variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been emerging and circulating in different parts of the world. Millions of vaccine doses have been administered globally, which reduces the morbidity and mortality of coronavirus disease-2019 efficiently. Here, we assess the immune responses of individuals after two shots of BBIBP-CorV or CoronaVac inactivated vaccine. We measured neutralizing antibody responses after the second vaccination by using authentic SARS-CoV-2 and its viral variants. All the serum samples efficiently neutralized SARS-CoV-2 wild-type lineage, in contrast, a part of serum samples failed to neutralize Alpha, Beta, Gamma, Delta, or Eta lineages, and only several serum samples were able to neutralize Omicron lineage virus strains (BA.1 and BA.2) with low neutralization titer. As compared with the neutralization of SARS-CoV-2 wild-type lineage, the neutralization of all other SARS-CoV-2 variant lineages was significantly lower. Considering that all the SARS-CoV-2 mutation viruses challenged the antibody neutralization induced by BBIBP-CorV and CoronaVac, it is necessary to carry out a third booster vaccination to increase the humoral immune response against the SARS-CoV-2 mutation viruses.
Project description:We analyzed serially collected serum samples from healthy adults who underwent BNT162b2 vaccination to elucidate the association between spike (S)-IgG antibody titers determined by ELISA using the WHO international standard (NIBSC code 20/136) and neutralizing antibody titers against three live SARS-CoV-2 variants. This study included 53 health care workers who received two doses of the BNT162b2 vaccine. S-IgG and nucleocapsid (N)-IgG antibody titers were measured by ELISA. Neutralizing (NT) antibody responses against three variants (Wuhan D614 G: KUH003, Alpha, and Delta) were evaluated before and after the first and second vaccination. N-IgG were not detected in any serum samples. S-IgG antibody titers remarkably increased after two BNT162b2 vaccine doses in all participants. S-IgG antibody titers were strongly correlated with NT titers against three variants of live viruses: KUH003 (r = 0.86), Alpha (r = 0.72), and Delta (r = 0.84). Serum samples from participants after one dose of BNT162b2 neutralized Alpha efficiently (median titer, 113.0), but median NT titers against KUH003 and Delta variants were lower, 57.0 and 28.0, respectively (p < .01). Two doses of the BNT162b2 vaccine elicited a strong immune response in this study. The second dose was required for induction of a strong booster effect. Serum collected from BNT162b2 vaccine recipients contained significantly lower neutralizing activity against Delta than that of against KUH003 (p < .0001) and Alpha (p < .0001). If a new variant emerges, live virus-based NT titers should be examined in serum obtained from vaccine recipients to evaluate vaccine efficacy for protection against infection.
Project description:Various vaccines have been developed to control the COVID-19 pandemic, but the available vaccines were developed using ancestral SARS-CoV-2 wild-type (WT) strains. Commercial anti-SARS-CoV-2 receptor binding domain (RBD) antibody assays have been established and employed for validation of vaccine efficacy. However, these assays were developed before the SARS-CoV-2 variants of concern (VOCs) emerged. It is unclear whether anti-RBD IgG levels can predict immunity against VOCs. In this study, we determined the correlations between the levels of anti-RBD IgG and neutralizing antibodies (NAbs) against SARS-CoV-2 variants in vaccinated subjects. After vaccination, 100% of subjects showed an anti-RBD IgG response, whereas 82, 79, 30, 75, and 2% showed NAb responses against WT, Alpha, Beta, Delta, and Omicron variants, respectively. A high correlation was observed between anti-RBD IgG and NAbs against WT, Alpha, Beta, and Delta, but not so for the Omicron NAbs. Among subjects with high levels of anti-RBD IgG, 93, 93, 71, 93, and 0% of them had NAbs against WT, Alpha, Beta, Delta, and Omicron variants, respectively. These results indicate that anti-RBD IgG levels cannot be used as a predictor for the presence of NAbs against the globally dominant SARS-CoV-2 Omicron variant.
Project description:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kappa (B.1.617.1) variant represented the main variant of concern (VOC) for the epidemic in India in May 2021. We have previously established a technology platform for rapidly preparing SARS-CoV-2 receptor-binding domain (RBD) candidate vaccines based on glycoengineered Pichia pastoris. Our previous study revealed that the wild-type RBD (WT-RBD) formulated with aluminum hydroxide and CpG 2006 adjuvant effectively induces neutralizing antibodies in BALB/c mice. In the present study, a glycoengineered P. pastoris expression system was used to prepare recombinant kappa-RBD candidate vaccine. Kappa-RBD formulated with CpG and alum induced BALB/c mice to produce a potent antigen-specific antibody response and neutralizing antibody titers against pseudoviruses of SARS-CoV-2 kappa, delta, lambda, beta, and omicron variants and WT. Therefore, the recombinant kappa-RBD vaccine has sufficient potency to be a promising COVID-19 vaccine candidate.
Project description:The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the generation of variants that may diminish host immune responses to vaccine formulations. Here we show a registered observational clinical trial (NCT04795414), we assess the safety and immunogenicity of the inactivated SARS-CoV-2 vaccine BBIBP-CorV in a cohort of 1006 vaccine recipients. No serious adverse events are observed during the term of the study. Detectable virus-specific antibody is measured and determined to be neutralizing in 698/760 (91.84%) vaccine recipients on day 28 post second vaccine dose and in 220/581 (37.87%) vaccine recipients on day 180 post second vaccine dose, whereas vaccine-elicited sera show varying degrees of reduction in neutralization against a range of key SARS-CoV-2 variants, including variant Alpha, Beta, Gamma, Iota, and Delta. Our work show diminished neutralization potency against multiple variants in vaccine-elicited sera, which indicates the potential need for additional boost vaccinations.