Ontology highlight
ABSTRACT: Objective
To compare the effect of two different automated oxygen control devices on target range (TR) time and occurrence of hypoxaemic and hyperoxaemic episodes.Design
Randomised cross-over study.Setting
Tertiary level neonatal unit in the Netherlands.Patients
Preterm infants (n=15) born between 24+0 and 29+6 days of gestation, receiving invasive or non-invasive respiratory support with oxygen saturation (SpO2) TR of 91%-95%. Median gestational age 26 weeks and 4 days (IQR 25 weeks 3 days-27 weeks 6 days) and postnatal age 19 (IQR 17-24) days.Interventions
Inspired oxygen concentration was titrated by the OxyGenie controller (SLE6000 ventilator) and the CLiO2 controller (AVEA ventilator) for 24 hours each, in a random sequence, with the respiratory support mode kept constant.Main outcome measures
Time spent within set SpO2 TR (91%-95% with supplemental oxygen and 91%-100% without supplemental oxygen).Results
Time spent within the SpO2 TR was higher during OxyGenie control (80.2 (72.6-82.4)% vs 68.5 (56.7-79.3)%, p<0.005). Less time was spent above TR while in supplemental oxygen (6.3 (5.1-9.9)% vs 15.9 (11.5-30.7)%, p<0.005) but more time spent below TR during OxyGenie control (14.7 (11.8%-17.2%) vs 9.3 (8.2-12.6)%, p<0.05). There was no significant difference in time with SpO2 <80% (0.5 (0.1-1.0)% vs 0.2 (0.1-0.4)%, p=0.061). Long-lasting SpO2 deviations occurred less frequently during OxyGenie control.Conclusions
The OxyGenie control algorithm was more effective in keeping the oxygen saturation within TR and preventing hyperoxaemia and equally effective in preventing hypoxaemia (SpO2 <80%), although at the cost of a small increase in mild hypoxaemia.Trial registry number
NCT03877198.
SUBMITTER: Salverda HH
PROVIDER: S-EPMC8685610 | biostudies-literature |
REPOSITORIES: biostudies-literature