Project description:Brainstem gliomas are not nearly as common in adults as they are in children. They are likely the final common consequence not of a single disease process but of several. They can be difficult to diagnose, and are challenging to treat. Clinical studies of this diagnosis are few and generally small. Because of these factors, our understanding of the biology of adult brainstem glioma is incomplete. However, the knowledge base is growing and progress is being made. In this article, we review the current state of knowledge for brainstem glioma in adults and identify key areas for which additional information is required.
Project description:IntroductionSide-effects during convection enhanced delivery (CED) are poorly understood. We intended to determine the frequency of side-effects during brain stem infusion and determine risk factors for side-effects persisting longer than 24 h.MethodsChildren with a radiological diagnosis of brain stem diffuse midline glioma/Diffuse Intrinsic Pontine Glioma were treated on compassionate grounds with awake infusion of carboplatin and sodium valproate into the brain stem using the 4-catheter (2 trans-cerebellar 2 trans-frontal) chronic, intermittent Renishaw Drug Delivery System. We used change in the Pontine Neurological Observation Score (PONScore), a standardised neurological assessment tool, to identify side-effects during infusion. Recovery was determined by retrospective chart review.Results55 infusions were performed in 8 children (3-11 years). Mean PONScore increased during infusion from 3.3 to 5.7 (p-value > 0.001). One hundred and fifty-seven infusion-related side-effects were identified including headache (33/157) and limb weakness (49/157). Fifty-four side-effects persisted > 24 h. Side-effects that had occurred during a previous infusion and those that occurred during infusion via trans-cerebellar catheters were more likely to be persistent with OR 2.333 (95% CI 1.094-4.976; p-value = 0.028) and 2.155 (1.029-4.513; p-value = 0.042) respectively. If infusion was stopped or titrated at onset rather than continued, the side-effect was less likely to persist > 24 h, OR 0.473 (95% CI 0.177-0.948; p-value = 0.037). Most side-effects developed within the first three millilitre of infusion.ConclusionsSide-effects during brainstem infusion are common, can be transient or persist longer than 24 h. Neurological injury during infusion may be time dependent and accumulative rather than volume dependent.
Project description:BackgroundDiffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT.MethodsTo establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI).ResultsFUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT.ConclusionRepeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.
Project description:Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase-RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.
Project description:PurposeA phase II study of bevacizumab (BVZ) plus irinotecan (CPT-11) was conducted in children with recurrent malignant glioma (MG) and intrinsic brainstem glioma (BSG).Patients and methodsEligible patients received two doses of BVZ intravenously (10 mg/kg) 2 weeks apart and then BVZ plus CPT-11 every 2 weeks until progressive disease, unacceptable toxicity, or a maximum of 2 years of therapy. Correlative studies included diffusion weighted and T1 dynamic contrast-enhanced permeability imaging, BVZ pharmacokinetics, and estimation of vascular endothelial growth factor receptor 2 (VEGFR-2) phosphorylation in peripheral blood mononuclear cells (PBMC) after single-agent BVZ.ResultsThirty-one evaluable patients received a median of two courses of BVZ plus CPT-11 (range, 1 to 19). No sustained responses were observed in either stratum. Median time to progression for all 34 eligible patients enrolled was 127 days for MG and 71 days for BSG. Progression-free survival rates at 6 months were 41.8% and 9.7% for MG and BSG, respectively. Toxicities related to BVZ included grade 1 to 3 fatigue in seven patients, grade 1 to 2 hypertension in seven patients, grade 1 CNS hemorrhage in four patients, and grade 4 CNS ischemia in two patients. The mean diffusion ratio decreased after two doses of BVZ in patients with MG only. Vascular permeability parameters did not change significantly after therapy in either stratum. Inhibition of VEGFR-2 phosphorylation in PBMC was detected in eight of 11 patients after BVZ exposure.ConclusionBVZ plus CPT-11 was well-tolerated but had minimal efficacy in children with recurrent malignant glioma and brainstem glioma.
Project description:PurposeTo evaluate the safety, maximum-tolerated dose, pharmacokinetics, and pharmacodynamics of vandetanib, an oral vascular endothelial growth factor receptor 2 (VEGFR2) and epidermal growth factor receptor inhibitor, administered once daily during and after radiotherapy in children with newly diagnosed diffuse intrinsic pontine glioma.Patients and methodsRadiotherapy was administered as 1.8-Gy fractions (total cumulative dose of 54 Gy). Vandetanib was administered concurrently with radiotherapy for a maximum of 2 years. Dose-limiting toxicities (DLTs) were evaluated during the first 6 weeks of therapy. Pharmacokinetic studies were obtained for all patients. Plasma angiogenic factors and VEGFR2 phosphorylation in mononuclear cells were analyzed before and during therapy.ResultsTwenty-one patients were administered 50 (n = 3), 65 (n = 3), 85 (n = 3), 110 (n = 6), and 145 mg/m(2) (n = 6) of vandetanib. Only one patient developed DLT (grade 3 diarrhea) at dosage level 5. An expanded cohort of patients were treated at dosage levels 4 (n = 10) and 5 (n = 4); two patients developed grade 4 hypertension and posterior reversible encephalopathy syndrome while also receiving high-dose dexamethasone. Despite significant interpatient variability, exposure to vandetanib increased with higher dosage levels. The bivariable analysis of vascular endothelial growth factor (VEGF) before and during therapy showed that patients with higher levels of VEGF before therapy had a longer progression-free survival (PFS; P = .022), whereas patients with increases in VEGF during treatment had a shorter PFS (P = .0015). VEGFR2 phosphorylation was inhibited on day 8 or 29 of therapy compared with baseline (P = .039).ConclusionThe recommended phase II dose of vandetanib in children is 145 mg/m(2) per day. Close monitoring and management of hypertension is required, particularly for patients receiving corticosteroids.
Project description:Diffuse intrinsic pontine gliomas (DIPGs) account for 10%-20% of all central nervous system tumors in children and are the leading cause of death in children with brain tumors. Although many clinical trials have been conducted over the past decades, the survival outcome has remained unchanged. Over 90% of children die within 2 years of the diagnosis, and radiotherapy remains the standard treatment to date. To improve the prognosis, hyperfractionated and hypofractionated radiotherapy and/or addition of radiosensitizers have been investigated. However, none of the radiotherapy approaches have shown a survival benefit, and the overall survival of patients with DIPG is approximately 11 months. Here, we comprehensively review the management of DIPG with focus on radiotherapy.
Project description:BackgroundDiffuse intrinsic pontine gliomas (DIPGs) are highly lethal childhood brain tumors. Their unique genetic makeup, pathological heterogeneity, and brainstem location all present challenges to treatment. Developing mouse models that accurately reflect each of these distinct features will be critical to advance our understanding of DIPG development, progression, and therapeutic resistance. The aims of this study were to generate new mouse models of DIPG and characterize the role of specific oncogenic combinations in DIPG pathogenesis.MethodsWe used in utero electroporation (IUE) to transfect neural stem cells in the developing brainstem with PiggyBac DNA transposon plasmids. Combinations of platelet-derived growth factor B (PDGFB), PdgfraD842V, or PdgfraWT, combined with dominant negative Trp53 (DNp53) and H3.3K27M expression, induced fully penetrant brainstem gliomas.ResultsIUE enabled the targeted transfection of brainstem neural stem cells. PDGFB + DNp53 + H3.3K27M induced the rapid development of grade IV gliomas. PdgfraD842V + DNp53 + H3.3K27M produced slower forming grade III gliomas. PdgfraWT + DNp53 + H3.3K27M produced high- and low-grade gliomas with extended latencies. PDGFB, PdgfraD842V, and PdgfraWT DIPG models display unique histopathological and molecular features found in human DIPGs. H3.3K27M induced both overlapping and unique gene expression changes in PDGFB and PdgfraD842V tumors. Paracrine effects of PDGFB promote disruption of pericyte-endothelial interactions and angiogenesis in PDGFB DIPG mouse models.ConclusionBrainstem-targeted IUE provides a rapid and flexible system to generate diverse DIPG mouse models. Using IUE to investigate mutation and pathohistological heterogeneity of DIPG will provide a valuable tool for future genetic and preclinical studies.
Project description:The purpose of this phase I/II, open-label, single-arm trial is to investigate the safety, tolerability, maximum tolerated dose and preliminary efficacy of the potential radiosensitizer gemcitabine, administered concomitantly to radiotherapy, in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). Six doses of weekly gemcitabine were administered intravenously, concomitantly to 6 weeks of hyperfractionated radiotherapy. Successive cohorts received increasing doses of 140, 175 and 200 mg/m2 gemcitabine, respectively, following a 3 + 3 dose-escalation schedule without expansion cohort. Dose-limiting toxicities (DLT) were monitored during treatment period. Clinical response was assessed using predefined case report forms and radiological response was assessed using the modified RANO criteria. Quality of life (QoL) was assessed using PedsQL questionnaires. Between June 2012 and December 2016, nine patients were enrolled. Treatment was well tolerated, and no DLTs were observed up to the maximum dose of 200 mg/m2. All patients experienced reduction of tumor-related symptoms. QoL tended to improve during treatment. PFS and MOS were 4.8 months (95% CI 4.0-5.7) and 8.7 months (95% CI 7.0-10.4). Classifying patients according to the recently developed DIPG survival prediction model, intermediate risk patients (n = 4), showed a PFS and MOS of 6.4 and 12.4 months, respectively, versus a PFS and MOS of 4.5 and 8.1 months, respectively, in high risk patient (n = 5). Gemcitabine up to 200 mg/m2/once weekly, added to radiotherapy, is safe and well tolerated in children with newly diagnosed DIPG. PFS and MOS were not significantly different from literature.
Project description:Therapies targeting immune checkpoints are effective in tumors with a high mutation burden that express multiple neo-antigens. However, glial tumors including those seen in children carry fewer mutations and there is an unmet need to identify new antigenic targets of anti-tumor immunity. SOX2 is an embryonal stem cell antigen implicated in the biology of glioma initiating cells. Expression of SOX2 by pediatric glial tumors and the capacity of the immune system in these patients to recognize SOX2 has not been previously studied. We examined the expression of SOX2 on archived paraffin-embedded tissue from pediatric glial tumors. The presence of T-cell immunity to SOX2 was examined in both blood and tumor-infiltrating T-cells in children and young adults with glioma. The nature of tumor-infiltrating immune cells was analyzed with a 37-marker panel using single-cell mass cytometry. SOX2 is expressed by tumor cells but not surrounding normal tissue in pediatric gliomas of all grades. T-cells against this antigen can be detected in blood and tumor tissue in glioma patients. Glial tumors are enriched for CD8/CD4 T-cells with tissue resident memory (TRM; CD45RO+, CD69+, CCR7-) phenotype, which co-express multiple inhibitory checkpoints including PD-1, PD-L1 and TIGIT. Tumors also contain natural killer cells with reduced expression of lytic granzyme. Our data demonstrate immunogenicity of SOX2, which is specifically overexpressed on pediatric glial tumor cells. Harnessing tumor immunity in glioma will likely require the combined targeting of multiple inhibitory checkpoints.