Ontology highlight
ABSTRACT: Background
Social anxiety disorder is characterized by intense fear and avoidance of social interactions and scrutiny by others. Although alterations in attentional control seem to play a central role in the psychopathology of social anxiety disorder, the neural underpinnings in prefrontal brain regions have not yet been fully clarified.Methods
The present study used functional MRI in participants (age 18-50 yr) with social anxiety disorder (n = 42, 31 female) and without (n = 58, 33 female). It investigated the interrelation of the effects of social anxiety disorder and early-life adversity (a main environmental risk factor of social anxiety disorder) on brain activity during an attentional control task. We applied DNA methylation analysis to determine whether epigenetic modulation in the gene encoding the glucocorticoid receptor, NR3C1, might play a mediating role in this process.Results
We identified 2 brain regions in the left and medial prefrontal cortex that exhibited an interaction effect of social anxiety disorder and early-life adversity. In participants with low levels of early-life adversity, neural activity in response to disorder-related stimuli was increased in association with social anxiety disorder. In participants with high levels of early-life adversity, neural activity was increased only in participants without social anxiety disorder. NR3C1 DNA methylation partly mediated the effect of social anxiety disorder on brain activity as a function of early-life adversity.Limitations
The absence of behavioural correlates associated with social anxiety disorder limited functional interpretation of the results.Conclusion
These findings demonstrate that the neurobiological processes that underlie social anxiety disorder might be fundamentally different depending on experiences of early-life adversity. Long-lasting effects of early-life adversity might be encoded in NR3C1 DNA methylation and entail alterations in social anxiety disorder-related activity patterns in the neural network of attentional control.
SUBMITTER: Wiegand A
PROVIDER: S-EPMC8687622 | biostudies-literature |
REPOSITORIES: biostudies-literature