Ontology highlight
ABSTRACT: Purpose
To evaluate whether the bony impingement lesion in elbow osteoarthritis can be removed accurately, as planned during arthroscopy, by using the computer-aided navigation system and performing mock surgery using 3-dimensional (3D)-printed bone models for clinical applications.Methods
We performed mock surgery using 3D-printed plaster bone models of the humerus of 15 actual patients with elbow osteoarthritis. Two types of experiments were conducted to evaluate the surgical accuracy. Three surgeons performed the mock surgery, each with 15 bone models (total, 45 trials). Surgical accuracy was based on the mean of 45 trials. The differences in surgical accuracy among the 3 surgeons were also evaluated (mean 15 trials). The same surgeon performed 30 trials, and the difference in surgical accuracy between the first and the second halves was also evaluated (mean 15 trials).Results
The spatial error in the entire elbow joint was 1.13 mm. In terms of resection volume, a mean of 8% more volume was resected than was planned, and 85% of the planned area was resected. In our experiments, the surgical accuracy was significantly lower in the anterior than in the posterior joint. Intrarater reliability was intraclass correlation (ICC)2,1 0.81 and inter-rater reliability was ICC1,1 0.87.Conclusions
Surgery using computer-aided navigation systems for arthroscopic debridement of the elbow provided accuracy comparable to that in other joints.Clinical relevance
Arthroscopic debridement of elbow osteoarthritis requires advanced surgical skills because accurate identification of the bony impingement legion is difficult during surgery. Surgery using computer-aided navigation systems for arthroscopic debridement of the elbow will provide real-time tracking of both the surgical instruments and bony impingement lesions as well as solve the technical difficulties of arthroscopic surgery of the elbow joint.
SUBMITTER: Shiode R
PROVIDER: S-EPMC8689228 | biostudies-literature |
REPOSITORIES: biostudies-literature