Unknown

Dataset Information

0

Use of Natural Spoken Language With Automated Mapping of Self-reported Food Intake to Food Composition Data for Low-Burden Real-time Dietary Assessment: Method Comparison Study.


ABSTRACT:

Background

Self-monitoring food intake is a cornerstone of national recommendations for health, but existing apps for this purpose are burdensome for users and researchers, which limits use.

Objective

We developed and pilot tested a new app (COCO Nutritionist) that combines speech understanding technology with technologies for mapping foods to appropriate food composition codes in national databases, for lower-burden and automated nutritional analysis of self-reported dietary intake.

Methods

COCO was compared with the multiple-pass, interviewer-administered 24-hour recall method for assessment of energy intake. COCO was used for 5 consecutive days, and 24-hour dietary recalls were obtained for two of the days. Participants were 35 women and men with a mean age of 28 (range 20-58) years and mean BMI of 24 (range 17-48) kg/m2.

Results

There was no significant difference in energy intake between values obtained by COCO and 24-hour recall for days when both methods were used (mean 2092, SD 1044 kcal versus mean 2030, SD 687 kcal, P=.70). There were also no significant differences between the methods for percent of energy from protein, carbohydrate, and fat (P=.27-.89), and no trend in energy intake obtained with COCO over the entire 5-day study period (P=.19).

Conclusions

This first demonstration of a dietary assessment method using natural spoken language to map reported foods to food composition codes demonstrates a promising new approach to automate assessments of dietary intake.

SUBMITTER: Taylor S 

PROVIDER: S-EPMC8691405 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4400840 | biostudies-literature
| S-EPMC10275719 | biostudies-literature
| S-EPMC6731646 | biostudies-literature
| S-EPMC5954085 | biostudies-literature
| S-EPMC6567015 | biostudies-literature
| S-EPMC3898132 | biostudies-literature
| S-EPMC8346089 | biostudies-literature
| S-EPMC5909892 | biostudies-literature
| S-EPMC4675681 | biostudies-other
| S-EPMC5069292 | biostudies-literature