ITGB4 deficiency induces mucus hypersecretion by upregulating MUC5AC in RSV-infected airway epithelial cells.
Ontology highlight
ABSTRACT: Respiratory syncytial virus (RSV) infection is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI), which is closely associated with the occurrence and development of asthma in later life. Integrin β4 (ITGB4) is down-regulated in the airway epithelial cells (AECs) of asthma patients which plays a critical role in the pathogenesis of asthma. However, whether ITGB4 is involved in the pathological processes of RSV infection remains unclear. In this study, we found that decreased expression of ITGB4 was negatively correlated with the level of MUC5AC in childhood AECs following RSV infection. Moreover, ITGB4 deficiency led to mucus hypersecretion and MUC5AC overexpression in the small airway of RSV-infected mice. MUC5AC expression was upregulated by ITGB4 in HBE cells through EGFR, ERK and c-Jun pathways. EGFR inhibitors treatment inhibited mucus hypersecretion and MUC5AC overexpression in ITGB4-deficient mice after RSV infection. Together, these results demonstrated that epithelial ITGB4 deficiency induces mucus hypersecretion by upregulating the expression of MUC5AC through EGFR/ERK/c-Jun pathway, which further associated with RSV-related LRTI.
Project description:Respiratory syncytial virus (RSV) infection in airway epithelial cells is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI). However, the pathological processes of mucus hypersecretion in RSV-infected airway epithelial cells remains unclear. The current study explores the involvement of miR-34b/miR-34c in mucus hypersecretion in RSV-infected airway epithelial cells by targeting FGFR1. First, miR-34b/miR-34c and FGFR1 mRNA were quantified by qPCR in throat swab samples and cell lines, respectively. Then, the luciferase reporters' assay was designed to verify the direct binding between FGFR1 and miR-34b/miR-34c. Finally, the involvement of AP-1 signalling was assessed by western blot. This study identified that miR-34b/miR-34c was involved in c-Jun-regulated MUC5AC production by targeting FGFR1 in RSV-infected airway epithelial cells. These results provide some useful insights into the molecular mechanisms of mucus hypersecretion which may also bring new potential strategies to improve mucus hypersecretion in RSV disease.
Project description:Airway mucus hyperproduction and fluid imbalance are important hallmarks of cystic fibrosis (CF), the most common life-shortening genetic disorder in Caucasians. Dysregulated expression and/or function of airway ion transporters, including cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), have been implicated as causes of CF-associated mucus hypersecretory phenotype. However, the contributory roles of other substances and transporters in the regulation of CF airway pathogenesis remain unelucidated. Here, we identified a novel connection between CFTR/ENaC expression and the intracellular Zn2+ concentration in the regulation of MUC5AC, a major secreted mucin that is highly expressed in CF airway. CFTR-defective and ENaC-hyperactive airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the zinc importer ZIP2/SLC39A2 (?C-ZIP2), which lacks the C-terminal domain. Importantly, ?C-ZIP2 levels correlated inversely with wild-type ZIP2 and intracellular Zn2+ levels. Moreover, the splice switch to ?C-ZIP2 as well as decreased expression of other ZIPs caused zinc deficiency, which is sufficient for induction of MUC5AC; while ?C-ZIP2 expression per se induced ENaC expression and function. Thus, our findings demonstrate that the novel splicing switch contributes to CF lung pathology via the novel interplay of CFTR, ENaC, and ZIP2 transporters.
Project description:The aim was to determine whether losartan reduces cigarette smoke (CS)-induced airway inflammation and mucus hypersecretion in an in vitro model and a small clinical trial. Primary human bronchial epithelial cells (HBECs) were differentiated at the air-liquid interface (ALI) and exposed to CS. Expression of transforming growth factor (TGF)-β1 and the mucin MUC5AC, and expression or activity of matrix metalloproteinase (MMP)-9 were measured after CS exposure. Parameters of mucociliary clearance were evaluated by measuring airway surface liquid volumes, mucus concentrations, and conductance of cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated and voltage-dependent potassium (BK) channels. Nasal cells were collected from study participants and expression of MUC5AC, TGF-β1, and MMP-9 mRNAs was measured before and after losartan treatment. In vitro, CS exposure of HBECs caused a significant increase in mRNA expression of MUC5AC and TGF-β1 and MMP-9 activity and decreased CFTR and BK channel activities, thereby reducing airway surface liquid volumes and increasing mucus concentrations. Treatment of HBECs with losartan rescued CS-induced CFTR and BK dysfunction and caused a significant decrease in MUC5AC expression and mucus concentrations, partially by inhibiting TGF-β signalling. In a prospective clinical study, cigarette smokers showed significantly reduced mRNA expression levels of MUC5AC, TGF-β1, and MMP-9 in the upper airways after 2 months of losartan treatment. Our findings suggest that losartan may be an effective therapy to reduce inflammation and mucus hypersecretion in CS-induced chronic airway diseases.
Project description:IntroductionAsthma with airway mucus hypersecretion is an inadequately characterized variant of asthma. While several studies have reported that hypersecreting patients may carry genetic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, many of those studies have been questioned for their numerous limitations and contradictory results.Objectives(1) To determine the presence of genetic variants of the CFTR gene in patients with asthma with and without airway mucus hypersecretion. (2) To identify the clinical, inflammatory and functional characteristics of the asthma phenotype with airway mucus hypersecretion.MethodComparative multicentre cross-sectional descriptive study that included 100 patients with asthma (39 hypersecretors and 61 non-hypersecretors). Asthmatic hypersecretion was defined as the presence of cough productive of sputum on most days for at least 3 months in 2 successive years. The patients were tested for fractional exhaled nitric oxide, spirometry, induced sputum cell count, total immunoglobulin E (IgE), peripheral blood eosinophil count, C-reactive protein, blood fibrinogen and blood albumin and underwent a skin prick test. Asthma control and quality of life were assessed by the Asthma Control Test and Mini Asthma Quality of Life questionnaires, respectively. Blood DNA samples were collected from the patients and next-generation sequencing using a MiSeq sequencer and the Illumina platform was used for the CFTR gene analysis.ResultsGenetic differences were observed in the c.1680-870T>A polymorphism of the CFTR gene, significantly more evident in hypersecretors than in non-hypersecretors: 78.94% vs. 59.32% in the majority allele and 21.05% vs. 40.67% in the minority allele (p = 0.036). Clinically, asthma hypersecretors compared to non-hypersecretors were older (57.4 years vs. 49.4 years; p = 0.004); had greater asthma severity (58.9% vs. 23.7%; p = 0.005); experienced greater airway obstruction (FEV1/FVC% 64.3 vs. 69.5; p = 0.041); had poorer asthma control (60% vs. 29%; p = 0.021); had lower IgE levels (126.4 IU/mL vs. 407.6 IU/mL; p = 0.003); and were less likely to have a positive prick test (37.5% vs. 68.85%; p = 0.011).ConclusionThe results suggest that patients with asthma and with mucus hypersecretion (1) may have a different phenotype and disease mechanism produced by an intronic polymorphism in the CFTR gene (NM_000492.3:c.1680-870T>A), and (2) may have a poorer clinical outcome characterized by severe disease and poorer asthma control with a non-allergic inflammatory phenotype.
Project description:Lung immune responses to respiratory pathogens and allergens are initiated in early life which will further influence the later onset of asthma. The airway epithelia form the first mechanical physical barrier to allergic stimuli and environmental pollutants, which is also the key regulator in the initiation and development of lung immune response. However, the epithelial regulation mechanisms of early-life lung immune responses are far from clear. Our previous study found that integrin ?4 (ITGB4) is decreased in the airway epithelium of asthma patients with specific variant site. ITGB4 deficiency in adult mice aggravated the lung Th2 immune responses and enhanced airway hyper-responsiveness (AHR) with a house dust mite (HDM)-induced asthma model. However, the contribution of ITGB4 to the postnatal lung immune response is still obscure. Here, we further demonstrated that ITGB4 deficiency following birth mediates spontaneous lung inflammation with ILC2 activation and increased infiltration of eosinophils and lymphocytes. Moreover, ITGB4 deficiency regulated thymic stromal lymphopoietin (TSLP) production in airway epithelial cells through EGFR pathways. Neutralization of TSLP inhibited the spontaneous inflammation significantly in ITGB4-deficient mice. Furthermore, we also found that ITGB4 deficiency led to exaggerated lung allergic inflammation response to HDM stress. In all, these findings indicate that ITGB4 deficiency in early life causes spontaneous lung inflammation and induces exaggerated lung inflammation response to HDM aeroallergen.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease attributed to the complex interplay of genetic and environmental risks. The muco-ciliary clearance (MCC) system plays a critical role in maintaining the conduit for air to and from the alveoli, but it remains poorly understood whether the MCC abnormalities in conducting airway are involved in IPF pathogenesis. In this study, we obtained the surgically resected bronchi and peripheral lung tissues from 31 IPF patients and 39 control subjects, and we sought to explore the morphologic characteristics of MCC in conducting airway by using immunostaining and scanning and transmission electron microscopy. In the submucosal regions of the bronchi, we found that the areas of mucus glands (MUC5B+) were significantly larger in IPF patients as compared with control subjects (p < 0.05). In the surface epithelium of three airway regions (bronchi, proximal bronchioles, and distal bronchioles), increased MUC5B and MUC5AC expression of secretory cells, decreased number of ciliated cells, and increased ciliary length were observed in IPF patients than control subjects (all p < 0.05). In addition, the mRNA expression levels of MUC5B were up-regulated in both the bronchi and peripheral lung of IPF patients than those of control subjects (p < 0.05), accompanied with 93.55% IPF subjects who had obvious MUC5B+ mucus plugs in alveolar regions. No MUC5B rs35705950 single-nucleotide polymorphism allele was detected in both IPF patients and control subjects. Our study shows that mucus hypersecretion and ciliary impairment in conducting airway are major causes of mucus plugs in alveolar regions and may be closely related to the alveolar injuries in IPF patients.
Project description:The anti-inflammatory action of silver nanoparticles (NPs) has been reported in a murine model of asthma in a previous study. But more specific mechanisms of silver NPs in an attenuation of allergic airway inflammation have not yet been established. Vascular and mucous changes are believed to contribute largely in pathophysiology in asthma. Among various factors related to vascular changes, vascular endothelial growth factor (VEGF) plays a pivotal role in vascular changes in asthma. Mucin proteins MUC5AC and MUC5B have been implicated as markers of goblet cell metaplasia in lung pathologies. The aim of this study was to investigate the effects of silver NPs on VEGF signaling pathways and mucus hypersecretion. Ovalbumin (OVA)-inhaled female BALBc mice were used to evaluate the role of silver NPs and the related molecular mechanisms in allergic airway disease. In this study, with an OVA-induced murine model of allergic airway disease, it was found that the increased levels of hypoxia-inducible factor (HIF)-1?, VEGF, phosphatidylinositol-3 kinase (PI3K) and phosphorylated-Akt levels, and mucous glycoprotein expression (Muc5ac) in lung tissues were substantially decreased by the administration of silver NPs. In summary, silver NPs substantially suppressed mucus hypersecretion and PI3K/HIF-1?/VEGF signaling pathway in an allergic airway inflammation.
Project description:The development of pathologic mucus, which is not readily cleared from the airways, is an important contributor to the morbidity and mortality associated with asthma. It is not clear how the major airway mucins MUC5AC and MUC5B are organized within the mucus gel or how this gel contributes to airway obstruction in asthma. Here, we demonstrated that mucus plugs from individuals with fatal asthma are heterogeneous gels with distinct MUC5AC- and MUC5B-containing domains. Stimulation of cultured human bronchial epithelial cells with IL-13, a key mediator in asthma, induced the formation of heterogeneous mucus gels and dramatically impaired mucociliary transport. Impaired transport was not associated with defects in ciliary function but instead was related to tethering of MUC5AC-containing mucus gel domains to mucus-producing cells in the epithelium. Replacement of tethered mucus with untethered mucus restored mucociliary transport. Together, our results indicate that tethering of MUC5AC-containing domains to the epithelium causes mucostasis and likely represents a major cause of mucus plugging in asthma.
Project description:Respiratory syncytial virus (RSV)-induced bronchiolitis is a significant contributor to infant morbidity and mortality. Previously, we identified that necroptosis, a pro-inflammatory form of cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3, and mixed lineage kinase domain like protein (MLKL), occurs in RSV-infected human airway epithelial cells (hAECs), mediating the release of the alarmin high mobility group box 1 (HMGB1). Here, we show that RSV infection of hAECs induces the biphasic release of HMGB1 at 6 ("early") and 24 ("late") hours post infection (hpi). The early phase of HMGB1 release at 6 hpi is cell death-independent, however, this release is nonetheless attenuated by inhibition of MLKL (primarily associated with necroptosis). The early release of HMGB1 promotes the late phase of HMGB1 release via the activation of RAGE (receptor for advanced glycation endproducts) and occurs with cell death. Treatment of hAECS with exogenous HMGB1 combined with a pan-caspase inhibitor induces hAEC necroptosis, and is attenuated by the RAGE antagonist, FPS-ZM1. Together, these findings demonstrate that RSV infection of hAECs leads to the early release of HMGB1, followed by a paracrine feed-forward amplification loop that further increases HMGB1 levels and promotes cell death. As the inhibition of MLKL or targeting of HMGB1/RAGE pathway attenuates the release of pro-inflammatory HMGB1 and decreases viral load, this suggests that the pharmacological targeting of these pathways may be of benefit for the treatment of severe RSV bronchiolitis.
Project description:We sought to identify transcriptionally active open chromatin domains in highly differentiated lower airway epithelial cells using transposase cleavage -next generation sequencing (ATAC-Seq).