Unknown

Dataset Information

0

Magnetically Aligned Ultrafine Cobalt Embedded 3D Porous Carbon Metamaterial by One-Step Ultrafast Laser Direct Writing.


ABSTRACT: Spatial manipulation of nanoparticles (NPs) in a controlled manner is critical for the fabrication of 3D hybrid materials with unique functions. However, traditional fabrication methods such as electron-beam lithography and stereolithography are usually costly and time-consuming, precluding their production on a large scale. Herein, for the first time the ultrafast laser direct writing is combined with external magnetic field (MF) to massively produce graphene-coated ultrafine cobalt nanoparticles supported on 3D porous carbon using metal-organic framework crystals as precursors (5 × 5 cm2 with 10 s). The MF-confined picosecond laser scribing not only reduces the metal ions rapidly but also aligns the NPs in ultrafine and evenly distributed order (from 7.82 ± 2.37 to 3.80 ± 0.84 nm). ≈400% increment of N-Q species within N compositionis also found as the result of the special MF-induced laser plasma plume. (). The importance of MF is further exmined by electrochemical water-splitting tests. Significant overpotential improvements of 90 and 150 mV for oxygen evolution reaction and hydrogen evolution reaction are observed, respectively, owing to the MF-induced alignment of the NPs and controlled elemental compositions. This work provides a general bottom-up approach for the synthesis of metamaterials with high outputs yet a simple setup.

SUBMITTER: Xu J 

PROVIDER: S-EPMC8693064 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4497324 | biostudies-literature
| S-EPMC3164131 | biostudies-literature
| S-EPMC5756664 | biostudies-literature
| S-EPMC3701168 | biostudies-literature
| S-EPMC5764976 | biostudies-literature
| S-EPMC6451962 | biostudies-literature
| S-EPMC5089621 | biostudies-literature
| S-EPMC5626724 | biostudies-literature