Unknown

Dataset Information

0

Fibroblast growth factor (FGF), FGF receptor (FGFR), and cyclin D1 (CCND1) DNA methylation in head and neck squamous cell carcinomas is associated with transcriptional activity, gene amplification, human papillomavirus (HPV) status, and sensitivity to tyrosine kinase inhibitors.


ABSTRACT:

Background

Dysregulation of fibroblast growth factor receptor (FGFR) signaling pathway has been observed in head and neck squamous cell carcinoma (HNSCC) and is a promising therapeutic target for selective tyrosine kinase inhibitors (TKIs). Potential predictive biomarkers for response to FGFR-targeted therapies are urgently needed. Understanding the epigenetic regulation of FGF pathway related genes, i.e. FGFRs, FGFs, and CCND1, could enlighten the way towards biomarker-selected FGFR-targeted therapies.

Methods

We performed DNA methylation analysis of the encoding genes FGFR1, FGFR2, FGFR3, FGFR4, FGF1-14, FGF16-23, and CCND1 at single CpG site resolution (840 CpG sites) employing The Cancer Genome Research Atlas (TCGA) HNSCC cohort comprising N = 530 tumor tissue and N = 50 normal adjacent tissue samples. We correlated DNA methylation to mRNA expression with regard to human papilloma virus (HPV) and gene amplification status. Moreover, we investigated the correlation of methylation with sensitivity to the selective FGFR inhibitors PD 173074 and AZD4547 in N = 40 HPV(-) HNSCC cell lines.

Results

We found sequence-contextually nuanced CpG methylation patterns in concordance with epigenetically regulated genes. High methylation levels were predominantly found in the promoter flank and gene body region, while low methylation levels were present in the central promoter region for most of the analyzed CpG sites. FGFRs, FGFs, and CCND1 methylation differed significantly between tumor and normal adjacent tissue and was associated with HPV and gene amplification status. CCND1 promoter methylation correlated with CCND1 amplification. For most of the analyzed CpG sites, methylation levels correlated to mRNA expression in tumor tissue. Furthermore, we found significant correlations of DNA methylation of specific CpG sites with response to the FGFR1/3-selective inhibitors PD 173074 and AZD4547, predominantly within the transcription start site of CCND1.

Conclusions

Our results suggest an epigenetic regulation of CCND1, FGFRs, and FGFs via DNA methylation in HNSCC and warrants further investigation of DNA methylation as a potential predictive biomarker for response to selective FGFR inhibitors in clinical trials.

SUBMITTER: Bao Y 

PROVIDER: S-EPMC8693503 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7226528 | biostudies-literature
| S-EPMC6029777 | biostudies-literature
| S-EPMC4797292 | biostudies-literature
| S-EPMC543411 | biostudies-literature
| S-EPMC9249016 | biostudies-literature
2016-08-08 | GSE73704 | GEO
| S-EPMC4798325 | biostudies-literature
2016-08-08 | E-GEOD-73704 | biostudies-arrayexpress
| S-EPMC4868726 | biostudies-literature