Unknown

Dataset Information

0

Modulating gene expression in breast cancer via DNA secondary structure and the CRISPR toolbox.


ABSTRACT: Breast cancer is the most commonly diagnosed malignancy in women, and while the survival prognosis of patients with early-stage, non-metastatic disease is ∼75%, recurrence poses a significant risk and advanced and/or metastatic breast cancer is incurable. A distinctive feature of advanced breast cancer is an unstable genome and altered gene expression patterns that result in disease heterogeneity. Transcription factors represent a unique therapeutic opportunity in breast cancer, since they are known regulators of gene expression, including gene expression involved in differentiation and cell death, which are themselves often mutated or dysregulated in cancer. While transcription factors have traditionally been viewed as 'undruggable', progress has been made in the development of small-molecule therapeutics to target relevant protein-protein, protein-DNA and enzymatic active sites, with varying levels of success. However, non-traditional approaches such as epigenetic editing, transcriptional control via CRISPR/dCas9 systems, and gene regulation through non-canonical nucleic acid secondary structures represent new directions yet to be fully explored. Here, we discuss these new approaches and current limitations in light of new therapeutic opportunities for breast cancers.

SUBMITTER: Kretzmann JA 

PROVIDER: S-EPMC8693572 | biostudies-literature | 2021 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modulating gene expression in breast cancer via DNA secondary structure and the CRISPR toolbox.

Kretzmann Jessica A JA   Irving Kelly L KL   Smith Nicole M NM   Evans Cameron W CW  

NAR cancer 20211222 4


Breast cancer is the most commonly diagnosed malignancy in women, and while the survival prognosis of patients with early-stage, non-metastatic disease is ∼75%, recurrence poses a significant risk and advanced and/or metastatic breast cancer is incurable. A distinctive feature of advanced breast cancer is an unstable genome and altered gene expression patterns that result in disease heterogeneity. Transcription factors represent a unique therapeutic opportunity in breast cancer, since they are k  ...[more]

Similar Datasets

| S-EPMC6515186 | biostudies-literature
| S-EPMC6594015 | biostudies-literature
| S-EPMC4964356 | biostudies-literature
| S-EPMC9419950 | biostudies-literature
| S-EPMC2660303 | biostudies-literature
| S-EPMC9357182 | biostudies-literature
| S-EPMC4324579 | biostudies-literature
| S-EPMC10070421 | biostudies-literature
| S-EPMC8266580 | biostudies-literature
| S-EPMC9576744 | biostudies-literature